Precision Agriculture: Data-Driven Decisions for the Business of Farming

Brett Whelan Precision Agriculture Laboratory Faculty of Agriculture and Environment The University of Sydney

Information about the variability in inputs and outputs of a farming business is VALUABLE

Identifying and measuring it in production and market relevant properties, and then using it, dictates the EXTENT OF THE VALUE **Australian Agriculture** 24.2 million people. <4% population employed in agriculture. 400M ha for agriculture. 8 % used for horticulture and broadacre cropping, but this contributes 56% of agriculture GDP. Water is the major limitation to crop growth. <1% of agricultural land is irrigated. About 14,600 high intensity crop producers (> 50% crops). Average high intensity cropping farm size = 1800 ha.

Precision Agriculture

A philosophy aimed at increasing long term, site-specific and whole-farm production efficiency, productivity and profitability while minimising unintended impacts on the environment.

Site-Specific Crop Management (SSCM)

SSCM is a form of PA whereby decisions on resource application and agronomic practices are improved to better match soil and crop requirements as they vary in the field.

Precision Livestock Management (PLM)

PLM is a form of PA that employs enhanced measurement, monitoring and controlling of the production/reproduction, health, welfare and movement of animals along with their environment.

Precision Agriculture

- In practice it creates the opportunity to increase the number of (correct) decisions per farm/field/field area/ plant/herd/animal/machine/season/marketing transaction made in the businesses of crop and animal management.
- It has always been a logical step in the evolution of agricultural management systems toward increased efficiency of input use, minimised waste and improved product quality, traceability and marketability.

Precision Agriculture in Australia

Australian producers have generally regarded Precision Agriculture as a means of improving resource-use efficiencies initially, with risk management, environmental impact management and marketing benefits following.

Precision Agriculture in Australia

Autosteer vehicle navigation

Beeline Navigator - late1990's A GPS and inertial guidance system for agricultural machinery

Beeline Navigator, Agsystems Pty Ltd Design Award at 2001 Australian International Design Awards, heavy machinery

Weed detection and spot spraying

Reflectance activated spot spraying of weedscommercialised in Canada from research in Tamworth in early 1980's

Felton, W.L. & McCloy, K.R. 1992. Spot spraying. Agricultural Engineering 73: 9-12

Precision Agriculture @ the University of Sydney Digital data

Precision Agriculture @ the University of Sydney

- Philosophical motivation the null hypothesis
- Optimised spatial prediction & mapping regimes
- Management class partitioning
- Designing and analysing within-field experiments & directed soil and plant point sampling
- Agronomic diagnosis and variable-rate input management

New data-driven management strategies Controlling nutrient input

- Readjustment of yield goals, either uniform or spatially variable.
- Nutrient replacement based on a sound understanding of spatial variability in field and environmental resources and off-take.
- Optimal application based on spatial variation in measured response to inputs.

New data-driven management strategies Controlling ameliorant input

 Variable-rate lime and gypsum application based on Soil ECa or pH mapping.

Protein monitoring instruments

Data Density Comparisons

Yield Sensor Data 725/ha

(1 second cycle)

Protein Sensor Data 65/ha (~12 second cycle)

Protein monitoring instruments

Calculating site-specific gross margins

Calculating TME

Total Metabolisable Energy in Grain

Protein monitoring instruments

Protein monitoring instruments

- significantly negative
- not significant
- significantly positive

Distribution of correlation coefficients

175 350

0

700

Metres

Proximal crop reflectance sensors

Holland

Improving the in-season prediction of yield for use in N application algorithms

Calculating whole field N requirements

N uptake required for a 4 t/ha wheat crop:

Calculating whole field N requirements

N required in crop for yield goal

Crop yield

Except for the sandhills, the rest of the paddock easily achieved the yield goal

Nitrogen use efficiency

Kg of grain / kg of N in crop vegetative matter

Year 1

Year 2

Nitrogen use efficiency

Kg of grain / kg of N in crop vegetative matter

The conversion rate of crop N into crop yield (NUE) decreases as the total amount of N taken up by the crop increases.

Nitrogen use efficiency

NUE plateaus at 550 - 600 shoots/m² and 14kg grain for every kg of N in the crop. Hitting 550 shoots/m² should optimize the yield/N ratio and confirms much of the recent canopy management advice

Digital agri-food and fibre systems - goals

- Increased efficiency, profitability and sustainability with respect to the use of inputs such as labour, nutrients, water, energy, and agrochemicals.
- Greater traceability and marketability of individual farm commodities and food and fibre products.
- Greater adaptability to changes in the environment and in consumer/market requirements (e.g. quality, nutrition, size).
- Ability to deliver the quantity and quality of commodities and products that meet the challenges of maintaining soil, food and nutrition security.

Digital agri-food and fibre systems - goals

STREET, BEALTHERE MERINE

Meeting the goals

• These systems will need to identify, gather and use relevant digital data in a more diagnostic way to optimise management and outcomes across all aspects of the breeding and selection (crops and animals), production, marketing, distribution, retail and consumption sectors.

A great global challenge for bright, considerate minds

Education tools for PA

Textbook

Training materials

Proximal Crop Reflectance Sensors udde to their capabilities and uses

PROXIMAL CROP REFLECTANCE SENSORS ORDER CODE: GRDC982 PRICE: FREE plus p&h

ADVANCED FIELD-SCALE EXPERIMENTATION FOR GRAIN GROWERS ORDER CODE: GRDC981 PRICE: FREE plus p&h

Research to practice

New stream for agricultural education

- Knowledge of basic biology of animals, plants, pests and diseases
- Knowledge of farming systems and critical decision points
- Knowledge of the design and application of engineering solutions, sensing technologies, data capture platforms, and data integration
- Knowledge of supply chain concepts in food and fibre industries
- Ability to analyse/integrate 'big data' to devise businessoptimal management plans in food and fibre industries

Precision Agriculture: Data-Driven Decisions for the Business of Farming

Brett Whelan Precision Agriculture Laboratory Faculty of Agriculture and Environment The University of Sydney

Site-Specific Crop management

Financial Benefits

Vehicle Navigation Systems:

savings in input costs (chemical, fuel, labour) ~5 – 15%

SpotSpray Technology:

Chemical savings ~A\$12/ha – A\$30/ha

VRA Application of Fertilisers:

Improvements in gross margin – ~A\$5/ha – A\$65/ha in paddock-scale experiments ~A\$12/ha – A\$42/ha for whole-farm rotations

Production Decision Support

- A tool that contains the capability of autonomously adapting decision functions and providing the farmer with alternative scenarios as input data changes across space and/or time.
- Involves the novel integration of relevant data from diverse domains, sources and scales to improve decision management at the sub-paddock level, within bounds of optimising the whole business profitability, and sustainability.
- Water, nitrogen and canopy management focus

Digital Agri-Food and Fibre Systems - Goals

Meeting the Goals

These systems will need to identify, gather and use relevant digital data in a more diagnostic way to optimise management and outcomes across all aspects of the breeding and selection (crops and animals), production, marketing, distribution, retail and consumption sectors.

GPS-based vehicle navigation systems

Guidance and autosteer

Application overlap using conventional marking tools can be anywhere from 0.2 metre to 0.5 metres *i.e.*

- o 3% to 6% on a 9 metre wide sowing implement; and
- 1% to 2% on a 27 metre wide spraying implement.

New agricultural education

Educational requirements

- Knowledge of basic biology of animals, plants, pests and diseases
- Knowledge of farming systems and critical decision points
- Knowledge of supply chain concepts in food and fibre industries
- Knowledge of the design and application of engineering solutions, sensing technologies, big data capture platforms, and data integration
- Ability to analyse big data to devise optimal response plans in food and fibre industries

GPS-based vehicle navigation systems

Strategy for incorporating SSCM

Check basic agronomy

Gather and assess in-field information

Look to find the cause/s

If it can be fixed..fix it using VRA

Use VRA to reduce input imbalances

Improve other business aspects

Strategy for incorporating SSCM

Check basic agronomy

Gather and assess in-field information

Look to find the cause/s

If it can be fixed..fix it using VRA

Use VRA to reduce input imbalances

Improve other business aspects

Variable-rate lime application

Soil pH results, lime recommendations and costs for class-specific or whole-field

treatment

GRDC Grains Research &

Development culture Laboratory

Digital soil surveys and diagnostics

Precision Agriculture Laboratory

Data-Driven Decisions

 Merge (large) data streams from diverse sources and scales with adaptable crop and environmental models that feed information into key decisions.

Components include:

- Data generation and capture (historic and real-time).
 These may include yield maps, aerial/proximal sensing (vigour, disease, pest), soil, environment, economics/markets.
- Data warehouses. These may eventually store data in the cloud using wireless data transfer.
- Prescription agriculture. Alternative options for crop management, variable-rate application and farm logistics based on probabilistic assessment of causal relationships.

Data-Driven Decisions

- The practical goal is to increase the number of (correct) decisions per hectare/per season made in the business of crop management.
- The potential financial benefits from using data to better managing inputs to match variability in operations varies with each field & farming business, but the potential improvements in gross margin (\$/ha) are significant.

SSCM decision support

SSCM decision support

SSCM decision support

Production Decision Support

- A tool that contains the capability of autonomously adapting decision functions and providing the farmer with alternative scenarios as input data changes across space and/or time.
- Involves the novel integration of relevant data from diverse domains, sources and scales to improve decision management at the sub-paddock level, within bounds of optimising the whole business profitability, and sustainability.
- Water, nitrogen and canopy management focus

McBratney, A.B. & Whelan, B.M. (1995) *The Potential for Site-Specific Management of Cotton Farming Systems*. CRC for Sustainable Cotton Production, 46p.

Vehicle engine load during sowing

Soil ECa measured using EM38h

Engine load (% of total power rating)

- + as-applied fertiliser map
- + yield map or imagery to estimate biomass

= spatial estimates of C and N dynamics which could be used to support balance calculations.

Australian Agriculture

Producer support estimates 2015

OECD (2016). Agricultural Policy Monitoring and Evaluation 2016

Wireless Communication & Cloud Computing

Site-specific crop management

There is a large list of important components of a farming operation for which it is useful to have data on the extent of variability in order to optimise production.

- For some, such as fertiliser/chemical quality, farmers rely on suppliers to minimise the variation and so 'remove' the need for substantial 'on-farm' monitoring.
- Others, such as crop yield, soil properties and pest and disease outbreaks, vary differently on each farm.
- Local knowledge about variability in these parts of the farming system can be used to build site-specific crop management (SSCM) strategies.
- SSCM can be used to identify and treat areas where yield potential can be improved or better match input use to the natural yield potential across a field or farm.

Digital Agri-Food and Fibre Systems - Goals

Meeting the Goals

 These systems will need to identify, gather and use relevant digital data in a more diagnostic way to optimise management and outcomes across all aspects of the breeding and selection (crops and animals), production, marketing, distribution, retail and consumption sectors.

Digital Agri-Food and Fibre Systems

Communication and data sharing between components of the systems

Enable non-linear connections and build extensive systemwide communication that is facilitated by data gathering and utilisation

Production Decision Support – near future needs

- Tools that contain the capability of autonomously adapting decision functions and providing farmers with alternative scenarios as input data changes across space and/or time.
- Involves the novel integration of relevant data from diverse domains, sources and scales to improve decision management at a fine scale, within bounds of optimising the whole business profitability, and sustainability.
- Water use, nitrogen/nutrition and canopy management target issues.
- The Augmented Agronomist.....not the Automated Agronomist.....unless the decision/action warrants.

Optimising crop production decisions

Each crop needs to be investigated for potential benefits

- Some crops will suit full-scale SSCM
- Others will suit SSCM aimed at quality parameters

oTaste (sugars/pungency)

oColour oUniformity oSize

- Others may use the environmental benefits for risk management (over/under fertilisation?) or marketing (environmentally friendly premiums)
- Needs to be assessed on the basis of the magnitude, pattern and management/financial impact of variation.

Potential management classes (PMC)

Investigative samples directed into 3 potential management classes

	Class1	Class 2	Class 3	Field
	(red)	(green)	(blue)	mean
Sorghum yield (t/ha)	4.7	5.6	5.9	5.4

identify differences in soil nitrate levels

What may be happening here?

Differences in production distinguished between the classes

Production Decision Support - future

Production Decision Support - future

Production Decision Support - future

Production Decision Support

Localised Industry Aggregation

Data

Real-time Operation and Production Data

 Storage

 Public Data

 Bases