Project proposal

1. **Project title**
 Why and how farmers innovate: the role of technology, individual attitudes and networking in the spatial diffusion of agro-environmental measures

2. **Project’s coordinator**
 Paola Gatto, PA

3. **Project’s coordinator SSD**
 AGR01

4. **Project Abstract (max 350 words)**
 The new environmental challenges (e.g. climate change, demand for landscape, ecosystem conservation) require innovative behaviour by the farmers in order to enhance their agricultural practices. EU Rural Development Programmes motivate farmers, using incentives-based mechanisms, to adopt Agro-Environmental Measures (AEMs). Despite two decades of applications, the rate of adoption by farmers is limited and with a scattered spatial distribution reducing the effectiveness of the expected environmental impacts at area scale.

 By using a novel, integrated and interdisciplinary approach, the project will identify the significant determinants of adoption of agro-environmental innovations, making reference to five most important group of factors: i) farm’s structural and economical features; ii) farmers’ individual characteristics motivations and attitudes; iii) technological issues; iv) networking and communication (social capital); and v) spatial dimensions. The approach will make evident how and why adoption of innovation diffuse spatially and temporally. Of the few publications dealing with these new dimensions, none has tackled this issue in an interdisciplinary perspective, considering all the possible determinants in a single approach.

 The research will contribute to the corpus of literature in an unexplored and promising field of work, both from the methodological perspective and the more effective and efficient policy design one. In particular, the expected outcomes of the project are: (i) to give a specific contribution to a novel and promising research field which is increasingly attracting the interests of the researchers at the international level; (ii) to develop the research and policy interface with the aim of enhancing the adoption of AEMs by farmers of the Veneto Region, helping to solve the actual limited adoption of AEMs and their scattered spatial diffusion, both responsible of the AEMs limited positive environmental impact.
5. Elements of novelty of the multidisciplinary approach of the project (max 350 words)

The first relevant novelty of the project lies in the attempt to reconcile in a comprehensive integrated and interdisciplinary framework the issue of understanding the factors affecting farmers’ participation to agro-environmental schemes. Indeed, a rather wide literature shows that this strategic issue in policy design has been so far tackled independently by the different disciplines, each one studying either separately the effects of the economic and the structural factors (e.g. the farm’s physical and economical size, the market orientation, the relationships between on-farm and off-farm income) the farmers’ and household’s features (e.g. age, gender, education) or the technological aspects (e.g. change in crop management techniques, yield and income in relation to soil type and climatic conditions).

A second novelty lies in the inclusion of two additional dimensions such as i) the social capital (bonding, bridging and linking ties) and ii) the spatial diffusion (considering multiple factors and methods such as network analysis and topology – i.e. spatial relations and connections) of adoption over time. These two elements will capture new evidence in order to better explain adoption patterns and contribute to policy fine-tuning.

Novelty and relevance of these themes is recalled in numerous Horizon 2020 calls, which stress not only the progress in research but also the positive operative returns for policy design. It is highlighted how a systematic framework is needed to create effective incentives for continuous provision of ecosystem services by agriculture, considering different temporal and spatial scales and conditions, giving attention also to social dimensions like innovative networks and territorial alliances. The role of spatial mapping is also explicitly recalled as an additional support to guide policy and decision making. Finally, emphasis is put on the need for ‘common frameworks and tools for the conservation and sustainable management of biodiversity and ecosystem services’.

6. Links with HORIZON 2020 programmes (the specific programme(s) has (have) to be mentioned)

As already specified, the project will investigate on a topic of high interest for one of the three pillars of H2020, i.e. Societal Challenges, in two of its specific programmes, i.e. N. 9 and N. 12. Specific calls where the contents of our project specifically mentioned are:

Programme 9 “Food Security, Sustainable Agriculture and Forestry, Marine, Maritime and Inland Water Research and the Bioeconomy”:

- **Biodiversity and ecosystem services: drivers of change and causalities SC5-06-2014** (link with our project: systematic approach ... integrated socio-economic-ecological framework assess the impacts of direct, indirect and emerging drivers of change... develop innovative ecosystem service oriented management concepts ... common frameworks and tools for the conservation and sustainable management of biodiversity and ecosystem services)
- **Enhancing mapping ecosystems and their services SC5-10a-2014** (link with our project: mapping ecosystem services in order to guide policy- and decision-making).

Programme 12 “Societal Challenges”:

- **Unlocking the growth potential of rural areas through enhanced governance and social innovation ISIB-03-2015** (link with our project: enabling rural areas to capitalize on their distinctive territorial capital ... development of new interactions .. a collective learning process which results in new skills and practices as well as in new attitudes, values,
behaviours and governance mechanisms the challenge of promoting institutional capacity building in these areas, at different levels)

• **Provision of public goods by EU agriculture and forestry: putting the concepts into practice ISIB-01-2014** (link with our project: create effective incentives and policy options for public goods provision by agriculture ... temporal and spatial scales, different types of cropping ... management systems as well as the diversity and dynamics of climatic, natural, cultural and socio-economic conditions ... Consider ways in which to valorise and establish effective support measures for the delivery of public goods in response to societal expectations by targeting a wide range of stakeholders including policy making, the farming and forestry sectors)

The project’s objectives are also in line with supporting the goals of the Common Agricultural Policy, the European Bioeconomy Strategy, and more broadly of the Europe 2020 strategy and its flagship initiatives 'Innovation Union' and 'Resource-efficient Europe'.

7. **Project’s coordinator scientific curriculum (max 500 words)**

Paola Gatto is Associate Professor of Forest Economics and Policy at the University of Padova since 2006. She holds a MPhil in Agricultural Economics from the University of Newcastle u.T and a PhD in Forest Economics and Planning from the University of Florence. She has thirty year research experience in the fields of forest and environmental economics and rural development. Over time, her research activities have focused in particular on optimisation methods for the economic improvement of natural resources in marginal area, the applications of Cost Benefit Analysis to the forest sector, the methods for the valuation of forest externalities within the total Economic Value umbrella, the appropriate policy tools for environmental conservation. Her current research activities focus on: i) Payments for Ecosystem Services and other policy tools for the provision of public goods from agriculture and forestry; ii) farmers’ and forest owners’ attitudes and perceptions; iii) property rights and property regimes in forestry; iv) forest commons, community forests and the related governance models. On these themes, she participated to numerous research projects both at a national and international levels, including seven European Research Projects and some COST Actions. She also acts as consultant for local and regional institutions in the Alpine area on the themes of sustainable local development and eco-tourism.

Paola Gatto has authored or co-authored more than 80 publications; she is a reviewer in several peer-review journals.

Since 2014 she has been appointed as a member of the Scientific Advisory Board of EfiMed. She is member of the Italian Association of Agricultural Economists (SIDEA) and of LEHR Doctoral Degree Programme at TESAF Department.

Since 2015 she is the Coordinator of the Teaching Committee of the Master Degree in Forest Science and a delegate of the ConDDEFFS, the Conference of Deans and Directors of European Forestry Faculties and Schools. She teaches Forest Economics and Policy (BSc level), Valuation of forest ecosystem services and Economics of forest resources and Economics (Master level).
8. Project’s coordinator main publications in the last five years

9. Other researchers (PO, PA, Ric members of the department) and their SSD

1. Edi Defrancesco PO, AGR01
2. Luigi Sartori, PA, AGR09
3. Lucia Bortolini, Ric, AGR09
4. Elena Pisani, Ric, AGR01
5. Francesco Pirotti, Ric, AGR05

10. Other researchers scientific curriculum (max 2000 words)

Edi Defrancesco was born in Cavalese (Trento) Italy, November 29th 1957. Bachelor’s degree ‘summa cum laude’ in Economics and statistics at the University of Padova (1980). PhD. in Agricultural Economics at University of Bologna (1987). Associate professor of Agricultural Economics, University of Venezia, Faculty of Economics (1987-1990). Associate professor of Agricultural Economics, University of Padova, Faculty of Agriculture (1991-1999). Full professor of Agricultural Economics, University of Padova, Faculty of Agriculture (since 1999). Member of research assessment boards at the University of Padova and Inea, Rome (2003-2010). Member of the Research central board at the University of Padova since 2011 (coordinator of the board since 2014). Member of scientific and teaching staff PhD Programme on Agricultural Economics at the University of Padova (since 1997). IAAE Member (International Association of Agricultural Economists). EAAE Member (European Association of Agricultural Economists). SIDEA Member (Italian Association of Agricultural Economists). AIEAA Member (Italian Association of agricultural an applied economics). SIEA Member (Italian Association of agro-food economics). IIFET (International Institute of Fishery Economics). Around 150 publications both at the international and the national level as a result of her research activities. Current areas of research include: i) Common agricultural policy and diffusion of sustainable method of production among farmers ii) food consumption, consumer preferences for quality food e.g. organic, PDO, PGI and functional food. Price analysis in differentiated markets; iii) the EU food quality policy, EU value-adding quality schemes and international protection issues iv) environmental economic assessment, environmental damage evaluation. Other research areas: i) Common agricultural and rural development policy analysis; ii) managerial economics, agribusiness economics and food industry analysis.

Luigi Sartori was born in Montagnana (Padova, Italy) December 10, 1957. He graduated in Agricultural Sciences at University of Padova in 1983, became researcher at TeSAF, Department of Land, Environment, Agriculture and Forestry of the University of Padova from 1990, Associate Professor in Agricultural mechanization from 2000 and Confirmed Professor in 2003. He is an effective member of the Italian Association of Agricultural Engineering (AIIA), the European Conservation Agricultores Federation (ECAF) and is a founding member of the Italian Association for the Soil Conservative Management (A.I.G.A.Co.S). He is director of CIRAP (Inter-university Centre of Precision Agriculture). The scientific activity is documented by publications about agricultural mechanization, conservation tillage techniques and technologies in precision agriculture. Prof. Sartori is involved in many national and international research projects. His teaching activity regards: Ergonomics in Agriculture, Agricultural mechanization, Mechanization in viticulture, Mechanization in organic farming (master), Machinery and equipment for livestock husbandry.
Lucia Bortolini gained the degree in Agricultural Sciences in 1986 at the Faculty of Agriculture of the University of Padova. In 1992 she gained the PhD in Agricultural Mechanics and Mechanization. Graduate technician from 1990 at the Dept.TESAF (Land, Environment, Agriculture and Forestry) of the University of Padova, from 2002 she is Assistant Professor. She teaches at the University of Padova Irrigation and drainage, Maintenance of green areas. Her research activity concerns the rational management of water resources through the study and application of innovative irrigation technologies with low environmental impact, the green infrastructures for the sustainable management of stormwater runoff in urbanized area (green roofs, rain gardens, etc.), and the application of hydrological models in the agricultural field. The main results concern the implementation of a simulation model of water balance to determine the soil workability conditions, the application of innovative irrigation and fertirrigation techniques with low environmental impact to horticultural crops and forage crops, the performance evaluation of sprinklers and emitters (drippers and sprayers). She was involved in research projects funded by MURST and Veneto Region since 1990 also as scientific coordinator. She is member of some scientific association (AIIA, CIGR, ICID, SOI). She published several scientific papers and she attained international conferences and workshops also as invited speaker. She is the supervisor of many degree thesis and reviewer of some scientific journals. She is the Erasmus Responsible person for the Degree in Land and landscape restoration and enhancement, and Erasmus Departmental Coordinator for the Universidade Tecnica de Lisboa (Portogallo) and for the Universidad Politecnica EUIT of Madrid (Spain).

Elena Pisanì is assistant professor at the Dep. “Territorio e Sistemi Agro-Forestali – TESAF” of the University of Padova. Her main research interests are: (i) social capital and rural development: theoretical analysis and methodological assessment; (ii) rural development theory and policies in Europe and in Latin America; (iii) cost-benefit analysis of investment projects in agriculture and forestry; social network analysis with applications for the evaluation of Rural Development Programs. She is M.Sc. in International Political Sciences cum laude at the University of Padova (1999/2000). In 2000/2001 she took a Post-graduate certificate (Italian Master) in “Appraisal and Management of Development Projects” at the “Università Statale di Milano”. In 2006/2007 she took her PhD in “Real Estate Appraisal and Land Economics” at the University of Padova (PhD thesis: “Evolution of Rurality in Developing Countries: theories and applications”). From 2001 till 2011, she collaborated to the teaching activities in economic disciplines at: (i) the School of Agriculture and Veterinary Medicines of the University of Padova; (ii) the School of Social Sciences and Economics of the Catholic University of Maule (Chile), (iii) the National University of Trujillo (Peru). From 2011 she is professor of “Local Development Planning with Social Responsibility” for the M.Sc. in “Local Development” of the University of Padova. From 2013 she is professor of “Principles of Agricultural, Forest and Environmental Economics” for the First cycle degree in “Agriculture and Forestry” of the University of Padova. She has realized research activities in Armenia, Brazil, Peru, Ecuador, Chile, Argentina and in Italy. She collaborated in development projects of FAO and IFAD and decentralized cooperation. She has been appointed as Honorary Professor at the National University of Trujillo – Peru for the didactic and research activities realized.

Francesco Pirotti is assistant professor at the Dep. “Territorio e Sistemi Agro-Forestali – TESAF” of the University of Padova. His research interests are in remote sensing applications for forestry and the environmental sciences, natural hazards and risk, in particular using laser scanning (lidar) data. He uses collaborative web/database solutions for applying algorithms to large remote sensing datasets. He holds courses in remote sensing and geographic information systems in higher-education and holds several connected external courses. He is author of 90+ articles in national and international journals and proceedings; 36 in indexed journals (Scopus/ISIWoS). Part of
11. Other researchers main publications in the last five years

Defrancesco E., Trestini S. (2012). An activity-based decision support system to evaluate the economic viability of fisheries management tools for the small pelagic species in the northern Adriatic Sea. NEW MEDIT, vol. 1, p. 12-18, ISSN: 1594-5685

10
12. Research background (max 500 words)

Agriculture is today affected by new environmental challenges (e.g. climate change, demand for landscape, ecosystem conservation) which require innovative behaviour by farmers (Blazy et al, 2011) and adaptation of their farming practices.

This wave of change has been supported by the EU Rural development programmes, providing set of incentives for agro-environmental measures (AEMs). However, despite such programmes have now been running for two decades, participation rates of farmers are still very variable, whereas understanding farmers’ motivation to adopt environmentally-friendly behaviour is imperative for designing effective (and efficient) policy mechanisms.

Pioneering work on the issue has started since the early ’80ies. Initial research has explained willingness of the farmers to adopt AEMs through socio-economic, structural factors, programmes’ characteristics and level of the compensation.

Further works have again questioned these results, claiming that adoption goes far beyond structural and policy aspects, but is a much more complex issue that depends on widely different elements, including motivations, attitudes, beliefs, contextual and technological features. Thus, more recently, an increasing body of research has broaden the field of exploration, turning to explain farmers’ behaviour through their attitudes and behavioural responses (Wilson, 1996; Beedell and Rehman, 2000; Defrancesco et al., 2009; Home, 2014; Price and Livingstone, 2014).

Adoption of innovation by farmers is also today tackled from the technical perspective, related to the difficulty to replace or adapt practices and technologies to the new requirements, i.e. the extent to which the new technology fits the farming system in place (Wynn et al., 2001) or affects the profitability and the risk of income instability (Qaim and de Janvry, 2003, Schneider et al. 2010), but they are generally concerned with a single technology (Blazy et al., 2011).

Today, despite the long evolution, two important elements are still missing from the state of the art: the social and the spatial dimensions. Only in very recent years, an emerging literature has pointed out these two issues by exploring the role played by interpersonal and group networks in innovation adoption (Moschitz et al 2015; Klerkx and Leeuwis, 2009) also through participation to AEMs (Taylor and Van Grienke, 2015). The novelty of this approach lies in considering the innovation diffusion among farmers as an interactive and learning process, where all actors involved contribute to diffuse the innovation (Woolcock and Narayan, 2000) and the information obtained by the neighbours, and this form of diffusion of information is very important in agriculture (Berger, 2001). The concept of network is strictly linked to the synergistic view of social capital defined as: “networks together with shared norms, values and understandings that facilitate co-operation within or among groups” (OECD, 2001).

Yet, a recent paper claims that ‘while studies of diffusion of innovations have been numerous, few have picked up the opportunity to statistically analyse the geographical dimensions of the diffusion processes’ (Björkhaug and Blekesaune, 2013), where there is a weak significance between similarity of parcels and distance (Schmit & Rounsevell, 2006).
13. Research project detailed description and motivated cost planning (point 16) justification (max 1000 words)

By using a novel, integrated and interdisciplinary approach, the project will identify the significant determinants of adoption of agro-environmental innovations by farmers. The approach will clarify how and why adoption of innovation diffuse spatially and temporally. Of the few publications dealing with these new dimensions, none has analysed an interdisciplinary perspective, considering all the possible determinants in a single approach. The research will provide a scientific contribution to an unexplored and promising field of work, both from the methodological perspective and from one regarding a more effective and efficient policy design.

The case study area is the Veneto Region, because of its homogeneous institutional and socio-economic context. The project will focus on specific AEMs, chosen according to the following criteria:

i. participation rates;
ii. implementation period (providing insights on spatial and temporal of innovation diffusion patterns under different policy scenarios);
iii. different technological requirements, constraints and impact on income from farming, so far explored in the literature only in terms of farmers’ subjective perception.

For these reasons, the following AEMs have been selected from the Rural Development Programme 2007-2013:

- 214a ‘Corridoi ecologici, fasce tampone, siepi e boschetti’
- 214i/1 ‘Agricoltura conservativa’
- 214i/3 ‘Ottimizzazione ambientale delle tecniche irrigue’

Figure 1 reports the temporal diffusion trends of the chosen AEMs. Measure 214a has a long history of implementation, having been introduced by the 2078/92 regulation. The latter two AEMs are more recent, having been introduced under the requirements of CAP Health Check. Focusing on these last two measures will allow deepening of the technical dimensions linked to the impacts on farm management and income.

Figure 1 Number of contracts per year in the selected AEMs
WP1 - Literature review and context analysis. The novelty of the approach asks for an integrated assessment of the multidisciplinary literature. New approaches like the Systematic Review and meta-analysis will be used by means also of specific software. The review will help us to identify the factors affecting the farmers’ willingness to participate to the AEMs.

WP2 – Spatial and temporal model specification. A multinomial-type model will explain the probability of adopting an AEM in a given period by considering the influence of five typologies of factors:

1. **Farm structural and economical features**, e.g. size (physical and economical), farming activities, market orientation, context, on-farm and off-farm income, labour availability;
2. **Farmers’ socio-economic characteristics**, e.g. age, gender, education level
3. **Farmers’ attitudes** according to the Theory of Planned Behaviour (Ajzen, 1991), attitudes towards innovation adoption, environmental conservation, risk and profit;
4. **Technological issues** related to change in crop management techniques, yield and income in relation to soil type and climatic conditions;
5. **Social capital factors**, e.g. the bonding, bridging and linking ties (networking and relationships amongst farmers and people), normative social capital (e.g. interpersonal and institutional trust), cognitive social capital (information sharing and common values).

The spatial determinants will be analysed by exploring their weight with respect to other factors. In particular, the spatial variables will be considered in a broader scope, testing weights which model space, considering multiple factors and methods such as network analysis and topology – i.e. spatial relations and connections and not simple distance.

WP3 – Design of survey and data collection tools. The individual farm files of participants to AEMs in the different RDP calls will be analysed in order to identify the timing and the farm structural data of the participating adopters (source: Regional official databases). For the field survey, more homogeneous sub-area per each AEM will be identified. For each AEM subarea, a random sample of adopters, stratified according to the time span of adoption, will be selected. Similarly, a sample of the specific AEM non adopters will be identified. An ad hoc questionnaire will be designed and thoroughly pre-tested. With regard to the technological factors, historical data relating to crops of previous years will be collected and the main technical parameters for the crops under cultivation will be detected.

WP4 – Field data collection. The data collection will be carried out through a questionnaire-based face to face interview (local travel costs occurring). The experimental data related to technological aspects will be collected on a limited number of farms and will be properly modelled in relation to context and structural factors. More specifically, the technological components take into account all aspects and consequences related to the transition from a conventional cultivation technique to the environmental-friendly techniques required by AEMs. In particular, issues related to the adoption of new machineries and irrigation methods, the use of water-balance models, the change of techniques of fertilization, tillage, seeding, weed control will be analysed. In addition, these changes often require increases in labour, variations in yield and income that may vary in function of soil type, site position and climatic conditions. All these expose farmers to additional risks often unbalanced by AEMs payments. Results will be extrapolated to the farms in the sample and appropriately validated. This WP is the most intensive in terms of field data requirements. For this reason, personnel will be hired through external services, also for the need to adapt the survey to the farmers’ availability.
WP5 – Model estimation. The econometric model estimate will be based on the collected sample-data and on the estimated technological factors in each sampled farm. Use of specific statistical software and processing of large amount of data will require buying appropriate durable equipment.

WP6 – Results analysis, policy recommendations and dissemination (cost-related national and international conferences and open access publications are generated). The innovative and interdisciplinary theoretical approach adopted will fill a relevant gap in knowledge and in policy design. Thus it will allow to understand which are the reasons why the farmers weakly adopt the AEMs. This information is strategic in order to improve the quality in the policy design of AEMs both for on-going assessment and for future regional programming.

A participatory approach is adopted with the involvement of regional agricultural agencies and other stakeholders in order to receive their feedback.

The Gantt chart reports the project’s schedule.
14. Project’s goals and description of the expected outcomes at the end of the second year and at the end of the third year (max 500 words)

Expected outcomes:

• clarify the different factors affecting the diffusion of environmental-friendly innovation in agriculture and its spatial and temporal dynamics;
• improve the diffusion of sustainable development trajectories in rural areas through a more effective adoption of AEMs;
• develop more effective AEMs in terms of: policy design - by better taking into account the impacts of technological issues; information and farmers’ catching strategies - by enhancing the individual and the collective participation also actively involving the more innovation oriented farmers also network-leaders; spatial diffusion;
• deliver innovative guidelines to AEMs policy makers;

At the end of second year, based on the activities realised regarding the literature review, the definition of factors affecting the adoption of AEMs, and the preliminary results of the model estimates, we expect to enhance our knowledge regarding the factors presently constraining the regional diffusion of environmental-friendly innovation. These elements are going to be in deep discussed with the relevant institutional stakeholders of the Veneto Region dealing the AEM design and management in order to provide them some insights for the mid-term CAP revision.

The expected outcomes, at end of third year, will allow to achieve the expected impacts of the project, previously widely described, in other words:

(i) to give a specific contribution to a novel and promising research field which is increasingly attracting the interests of the researchers at the international level. We expect that the obtained results will allow the group to jointly participate to Horizon 2020 calls;

(ii) to develop the research and policy interface with the aim of enhancing the adoption of AEMs by farmers of the Veneto Region, helping to solve the actual limited adoption of AEMs and their scattered spatial diffusion which are both responsible of the AEMs limited positive environmental impacts.

15. Verifiable outcomes at the end of the project and strategy for results communication (max 500 words)

• At least 2 scientific ISI-SCOPUS publications on multidisciplinary scientific journals
• Participation to national and international scientific conferences based on a commonly-agreed dissemination programme to be defined by the research group throughout all the research project
• 1 Intermediate Report (at the end of the second year, according to the project call)
• 1 Intermediate Workshop with officials of Veneto Region involved in the design and management of rural development programme
• Operational guidelines for policy-makers, taking into account an interdisciplinary framework of all the factors affecting AEM adoption (farm structural and economical features, farmers’ socio-economic characteristics, farmers’ attitudes, technological issues and social capital factors, particularly information diffusion and networking). These guidelines will be finalised at: (i) fine-tuning the AEMs bringing specific attention to technological issues and their impacts in terms of risks; (ii) improving the networked-based
information strategy to farmers aiming to increase the individual participation to the AEMs and to facilitate collective participations such as operative groups of EIP-AGRI instrument, Local Action Groups of the new CLLD, and other network measures.

• 1 Final Workshop for the dissemination of the project results to the relevant stakeholders, including policy makers and AEMs responsible of the Veneto Region, technicians in the research and experimental activities of ‘Veneto Agricoltura’, farmers’ organisations, professional associations of agronomists and agro-technicians.
• Moreover, as required by the project call, after 1 year from the project conclusion, an ex-post report will be prepared and presented to the donor, reporting on expenses achievement of results and state of scientific publications.

16. Costs (escluso il costo del dottorato)

<table>
<thead>
<tr>
<th>Description</th>
<th>Euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durable equipment</td>
<td>1,500</td>
</tr>
<tr>
<td>1 PC with high-processing capacity (WP5)</td>
<td></td>
</tr>
<tr>
<td>Consumables</td>
<td>500</td>
</tr>
<tr>
<td>Software licence for Systematic literature review (WP1)</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td></td>
</tr>
<tr>
<td>• Local travel for field data collection (WP4)</td>
<td>10,000</td>
</tr>
<tr>
<td>• National and international travel for participation to national</td>
<td></td>
</tr>
<tr>
<td>and international conferences</td>
<td></td>
</tr>
<tr>
<td>• Meetings with stakeholders (all WPs)</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td></td>
</tr>
<tr>
<td>Publications</td>
<td>6,000</td>
</tr>
<tr>
<td>Proofreading services</td>
<td></td>
</tr>
<tr>
<td>Open Access publications</td>
<td></td>
</tr>
<tr>
<td>External services</td>
<td>10,519</td>
</tr>
<tr>
<td>Data collection (WP4)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>28,519</td>
</tr>
</tbody>
</table>

Firma del proponente
REFERENCES

