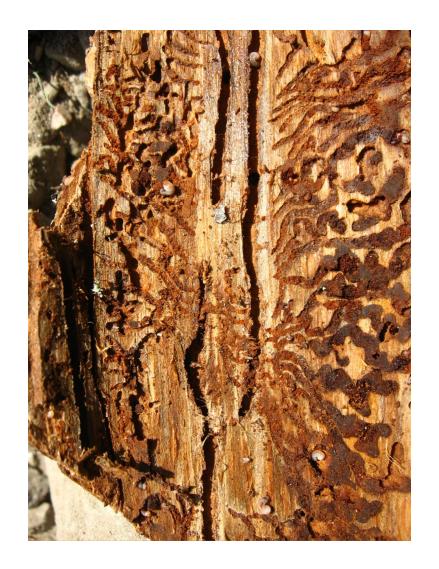
Agripolis

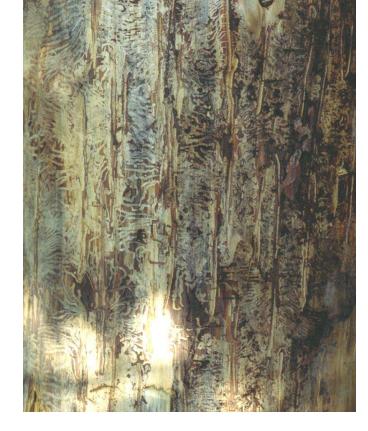
15 marzo 2019

"Vaia: un approccio integrato per la gestione post-evento"

Andrea Battisti

Il rischio fitosanitario





4800-6400 insetti / albero IN

25000-75000 insetti / albero OUT

1:100

Ips typographus e i funghi dell'azzurramento associati (Ophiostoma spp.)

Ips typographus 'bostrico tipografo' Coleoptera Curculionidae Scolytinae

Sverna come adulto Svolge da 1 a 3 generazioni all'anno

Le difese dell'abete rosso nei confronti di scolitidi e funghi

Principi della gestione di *Ips typographus*

Situazione ordinaria

Albero vivo in buona salute → resistente

Albero vivo soggetto a stress → parzialmente suscettibile

Albero a terra tagliato o sradicato → estremamente suscettibile

Situazione straordinaria legata a tempeste di vento

Grande quantità di alberi freschi a terra → moltiplicazione degli scolitidi

Grande numero di scolitidi -> attacco in massa ad alberi vivi

Attacco in massa ad alberi vivi → superamento delle difese fisiche e chimiche

Valutazione del rischio di attacco a piante sane

Modelli per *Ips typographus* in Europa

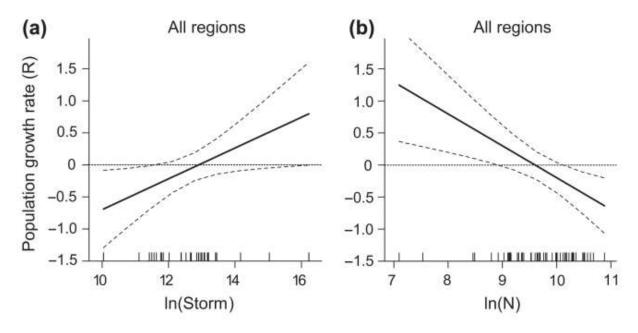
Vento: 6

Temperatura: 4

• Fattori endogeni: 3

• Deficit di precipitazione estiva: 2

• Esposizione a sud: 2


Massa volumetrica: 1

Tempi di risposta: 3 – 12 anni

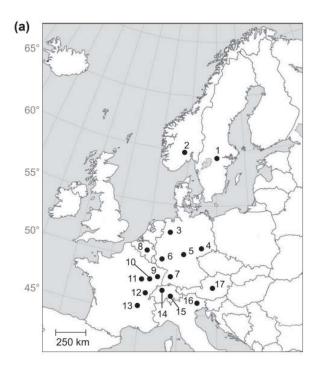
Fattori di rischio per vento/scolitidi nei Tatra

- Altezza
- Diametro
- Età
- Radiazione solare

Schianti e dinamica di popolazione in Svezia

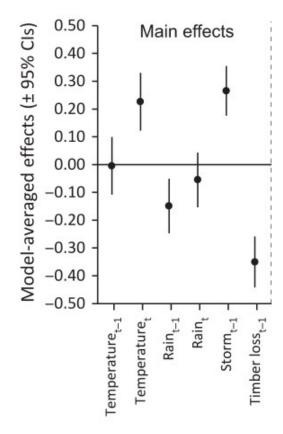
Effetto schianti su scala logaritmica

Competizione per il substrato


Oikos 000: 001–009, 2013 doi: 10.1111/j.1600-0706.2013.00431.x

© 2013 The Authors. Oikos © 2013 Nordic Society Oikos Subject Editor: Regino Zamora. Accepted 21 March 2013

Population dynamics of the spruce bark beetle: a long-term study


Lorenzo Marini, Åke Lindelöw, Anna Maria Jönsson, Sören Wulff and Leif Martin Schroeder

Climate drivers of bark beetle outbreak dynamics in Norway spruce forests

Lorenzo Marini, Bjørn Økland, Anna Maria Jönsson, Barbara Bentz, Allan Carroll, Beat Forster, Jean-Claude Grégoire, Rainer Hurling, Louis Michel Nageleisen, Sigrid Netherer, Hans Peter Ravn, Aaron Weed and Martin Schroeder

Eventi eccezionali legati a tempeste di vento e scolitidi

Area	Anni	Impatto vento (m m³)	Impatto scolitidi (m m³)	scolitidi / vento
Germania	1972	9,2	0,7	0,08
Svizzera	1990	5	2,2	0,44
Svizzera	1999	8	8	1
Francia	1999	87	2	0,02
Svezia	2005	75	1,5	0,02
Svezia	2007	12	0,5	0,04
Austria	2002	4	8	2
Austria	2007	19	10	0,5

Grégoire et al. 2015

Europa 1958-2001: 2,9 m m³ per anno dovuti a scolitidi (Seidl et al. 2011)

Intervento di rimozione del legname e non-intervento

Area	Anni	scolitidi / vento Intervento	scolitidi / vento Non-intervento
Svezia	2005	0,02	0,5
Svezia	2007	0,04	0,1 - 3,6
Germania	Vari	0,08	2 – 5,4
Polonia-Slovacchia	1994	-	5,3

Non-intervento (Baviera) associato a:

- aumento 30% del deflusso idrico superficiale
- aumento del nitrato nelle acque di deflusso (fino a 60 mg/L)

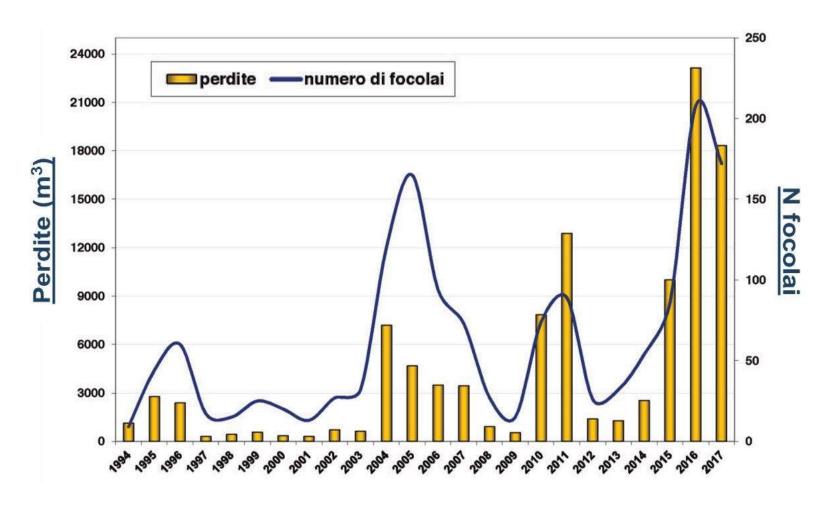
ma anche a:

- aumento del legno morto
- incremento della biodiversità

Percezione sociale del problema vento-scolitidi

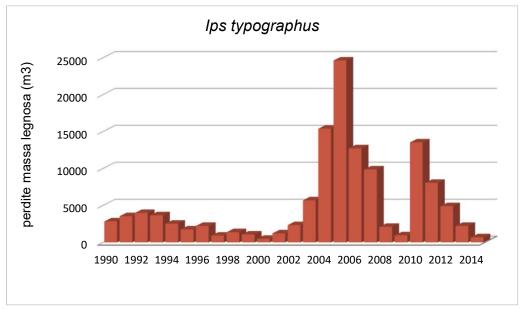
Aree protette:

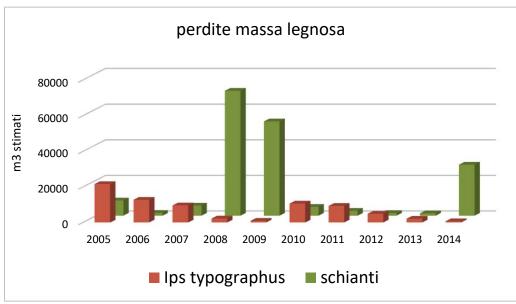
- frequentatori occasionali ripartiti equamente tra sostenitori di intervento e di non-intervento
- frequentatori regolari favorevoli al non-intervento (Baviera)


Aree non-protette:

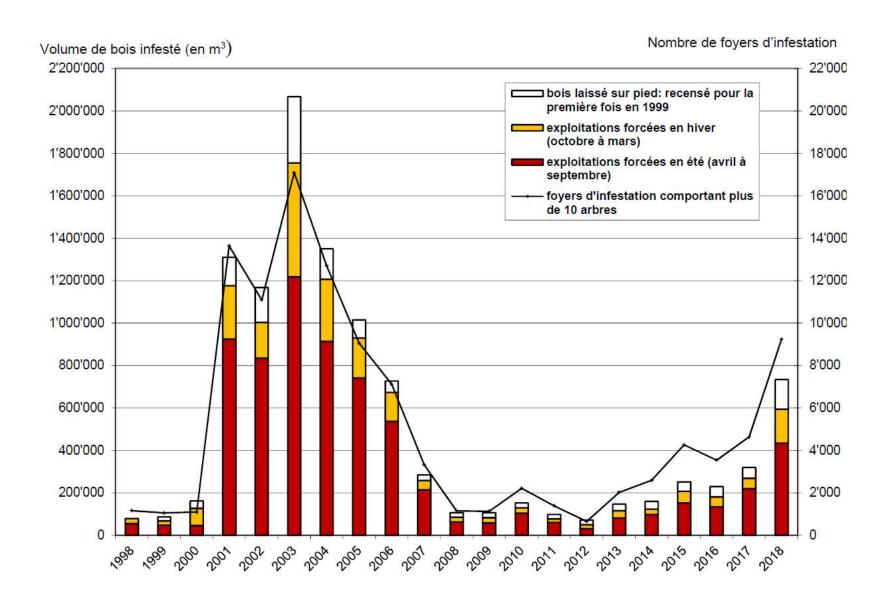
• percezione favorevole agli interventi in relazione ai benefici diretti (Baviera, Svezia)

Il problema vento-scolitidi nelle Alpi sudorientali


- Dimensione del fenomeno rappresenta una novità
- Distribuzione spaziale degli schianti eterogenea
- Limite areale abete rosso e cambiamento climatico
- Temperatura e sviluppo degli insetti
- Capacità di intervento limitata
- Presenza diffusa di scolitidi


Ips typographus in Friuli VG 1994 - 2017

Elaborazione FVG


Ips typographus in Trentino 1990 - 2014

Elaborazione Provincia Autonoma di Trento

Ips typographus in Svizzera 1998 - 2018

Modello previsionale delle infestazioni nelle Alpi sudorientali

Area di schianto	Rimozione del legname	Probabilità di attacco	Tempo di attacco
Estesa	Possibile	Moderata	Ritardato
	Non possibile	Elevata	Ritardato
Localizzata	Possibile	Bassa	-
	Non possibile	Elevata	Rapido

Intensità e tempo di attacco dipendenti da:

- densità delle popolazioni locali
- andamento climatico primavera-estate 2019 e 2020

Misure preventive delle infestazioni nelle Alpi sudorientali

Misura	Tempo	
Rimozione del legname a terra	Entro aprile - maggio	
Rimozione della corteccia	Entro aprile – maggio	
Protezione delle cataste	Entro aprile – maggio	
Sorveglianza fitosanitaria	Immediata	
Eliminazione piante infestate	Entro giugno (gen. 1) oppure entro primav. succ. (gen. 2)	

Priorità da stabilire in relazione a:

- valutazione del rischio a vari livelli di scala
- politiche di gestione forestale nel lungo periodo

Strumenti operativi

- Coordinamento delle amministrazioni
- Monitoraggio delle popolazioni nell'intera area
- Azioni di ricerca e di didattica
- Collaborazione internazionale
- Condivisione pubblica delle iniziative