

Detection of old-growth forests through satellite images: a case study in a mediterranean mountain range (Cazorla, southeast Spain)

Reyes Alejano, Carlos Guerrero, Anabel Calzado, Cristina Pérez Carral, Javier Vázquez-Piqué

Agroforestry Sciences Department, University of Huelva, Spain

"Aserradores, hacheros, pelaores, ajorraores, pineros, resineros, esencieros, carboneros, leñadores y matuteros, carreteros, arrieros, aladreros, alimañeros, aperadores, cadiceros, cuchareros, seteros, pastores, herbolario, cazadores, pescadores, guardas, carpinteros, mieleros, peluseros, neveros"

Idánez Aguilar, 1995

Before going to the point....

Old Growth Forests in Spanish and Andalusia Forestry Regulations, Initiatives and Projects
Andalusian OGF
Our Projects on OGF

Laws and strategic plans about forests

SPAIN (NATIONAL)

- Law 43/2003 Forests (Montes) It is the basic national regulation on forestry; there is no new draft currently in development.
- Spanish Forest Strategy Horizon 2050 (approved 2022). Reference document for national forest policy. Considering European Strategy for Biodiversity (2020) that establishes to strictly protect all primary and mature forests in EU, including actions to define, map, monitor and preserve these ecosystems
- Spanish Forest Plan 2022–2032. It implements the Spanish Forest Strategy for the first decade

ANDALOUSIA (REGIONAL)

- Andalusian Forest Law (1992).
 A new draft has been under development since 2024.
- Andalusian Forest Plan, approved in 1989 and revised in 2023 to adequate to 2030 Agenda

SPANISH FORESTRY STRATEGY-HORIZON 2050

Goal: To establish a long-term vision for achieving managed, resilient, and multifunctional forests that contribute to social well-being, biodiversity, the green economy, and climate change mitigation

Measures:

- Identification, protection, and restoration of forest ecosystems with high ecological value (including mature forests).
- Creation of inventories and mapping of forest areas with high conservation value.
- Integration of old-growth forest conservation into regional and local forest planning instruments.
- Recognizes these forests as critical for climate resilience, biodiversity corridors, and carbon sequestration.

SPANISH FORESTRY PLAN 2022-2032

Goal: To implement the Spanish Forestry Strategy during its first decade through 289 specific measures, prioritizing active and sustainable forest management, protection against threats and the provision of ecosystem services.

Measures:

- Develops a national inventory of mature and singular forests, including criteria for ecological value, age, structure, and biodiversity.
- Promotes passive management (nonintervention) in selected old-growth stands
- Enhances connectivity between mature forest patches to support ecological networks.
- Encourages monitoring and research on forest aging processes and their role in ecosystem services.

DRAFT OF THE NEW ANDALUSIAN FOREST LAW (2024), law currently in force from 1992

ANDALUSIAN FOREST PLAN (1989, adequation to Horizon 2030 in 2023)

Goal: to modernize and adapt the region's forest legislation to current environmental, social, and economic challenges.

Measures:

- Creation of the "Red MUESTRA" (Network of Exemplary Forests): network of forests managed sustainably, serving as models of best practices in conservation and multifunctional use.
- Prioritizes long-term conservation of ecologically valuable forest areas.
- Encourages landowners to preserve mature and biodiverse forest stands.
- Focuses on enhancing forest structure and ecological functions, especially in areas with old or vulnerable tree populations.

Goal; to respond to the evolving ecological, social, and economic challenges facing Andalusia's forest ecosystems

Measures:

- Adaptive Management of Mediterranean Ecosystems protecting key ecosystem services in forests threatened by climate change, including those with mature or structurally complex vegetation.
- Promotes the creation of forest corridors, which benefit old-growth patches and enhance landscape-level resilience.
- Strengthens the use of forest inventories and ecological indicators to identify and manage forests of high conservation value.

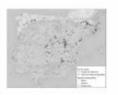
LIFE RedBosques & LIFE RedBosques

LIFE RedBosques (2016-2019)

- Objective: to identify, characterize, and conserve stands of mature forests in Spain.
- Outcomes:
- Identified and characterized mature forest stands.
- Developed protocols to assess forest maturity.
- Created a network of high-maturity forest plots.
- Published management guidelines for maturity conservation.

LIFE RedBosques Clima (2022-2024)

- Focused on the role of mature forests in climate change adaptation and mitigation.
- Has produced technical reports and tools for forest managers.
- Contributes to the implementation of the Spanish Forest Strategy and the integration of mature forests into territorial planning.


Antecedente

Revisión del concepto de madurez y del valor de los rodales maduros

Una red de rodales de elevada madurez

Un procedimiento para su caracterización

Unas recomendaciones para la conservación y gestión de los rodales maduros

Una herramienta para la valoración de su naturalidad

Reference Stand Map – Red Bosques Project (redbosques.creaf.cat/redbosques/herramient as#mapaFase1)

Anderdalen National Park-Norway

Ånderdalen nasjonalpark

Velkommen inn
- Ta med din egen ved

I Ånderdalen får trærne stå til de dør og forvandles til sølvgrå naturmonomenter. Det tar mange hundre år før trærne blir slik, så vi setter pris på at de får stå i fred og ikke brukes til brensel. Dersom du planlegger å lage bål, ta med deg litt ved og bruk de etablerte bålplassene.

Buresboahtin - Váldde iežat muoraid mielde

Álddovuomis muorat čužžot dassážii go ástet ja šaddet silbaránes luonddumonomeantan. Gollet mánga čuodi jagi ovdal go muorat šaddet dakkárin, nu ahte mii árvvusatnit dan ahte besset leat ráfis, eai ge geavahuvvo boaldámuššan. Jus plánet dolastallat, de váldde mielde veahá muoraid ja dolastala dolastallansajiin mat jo gávdnojit.

Welcome - yet take your own firewood with you

In Anderdalen the trees are protected until they die naturally and thus transform into silver-grey natural monoliths. Such a process takes many hundreds of years, and we are therefore grateful to all who let dead standing trees stay as they are. Please refrain from breaking off any branches or using the dead trunks for firewood. If you want to make a fire, take instead your own supply of firewood, and please remember to use established fire pits.

Old Growth Forests in Andalusia

Los Alcornocales Natural Park (Quercus suber)

Doñana National Park (Pinus pinea)

Sierra de Las Nieves National Park (Abies pinsapo)

Sierra Nevada National Park (Pinus sylvestris)

Cazorla, Segura y Las Villas Natural Park (Pinus nigra)

Natural and National Parks in Andalusia

Alcornocales (Cork oak forests)

Alcornocales Natural Park(1989)

Cork Oak Forests

Cadiz and Málaga province

ZEC Natura 2000

Ecological values, biodiversity and biological corridor between Europe and Africa (Mediterranean Intercontinental Biosphere Reserve, designated by UNESCO in 2006)

Pinsapares (Abies pinsapo forest)

Sierra de las Nieves National Park (2021)

Abies pinsapo Forests Natural Park since 1989 Málaga province ZEC Natura 2000

Relic fir in the South of Spain and North Morocco

Special Plan for protection of Abies pinsapo in Andalusia since 2011

Scots pine forests (Pinus sylvestris)

Sierra Nevada National Park (1999)

Pinus sylvestris forests
Natural Park since 1989)
Granada province
The Southernmost
Scotspine forest in Spain

Coastal pine forests (Pinus pinea forests in dunes)

Doñana National Park (1969)

Pinus pinea forests on dunes Huelva and Seville provinces Biosphere Reserve, ZEPA, LIC, Ramsar, World Heritage UNESCO (1994)

Bosques de pino salgareño (Pinus nigra ssp. salzmannii)

Cazorla,
Segura and Las
Villas Natural
Park (1986)

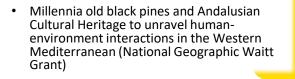
Pinus nigra forest
Jaén province
ZEC Natura 2000
Oldest forests in the Iberian Peninsula, over 1000 years old

Research Projects on Old-Growth Forests (UHU)

Project Title	Main Objectives
The End is the Beginning (BEGINPINE, 2023–2026)	Studies regeneration and aging of native pine forests. Analyzes resilience and vulnerability to environmental change. Aims to improve adaptive ecosystem management.
End of the Cycle (OLDPINE, 2018–2022)	Investigates senescence, mortality, and regeneration in Mediterranean pines. Evaluates adaptation to climate change. Proposes sustainable forest management strategies.
Old Pine Forests in the Face of Climate Change (2016–2018)	Analyzes vulnerability and adaptive capacity of old-growth forests. Studies implications for forest management. Supports conservation policies under climate change.

Research Projects on Old-Growth Forests (UHU)

Project Title	Main Objectives
Vulnerability of P pinea Stands (20 2017)	
Millennia Old Bla Pines and Andalu Cultural Heritage 2015) NATIONA GEOGRA	usian Studies historical human-environment interactions. (2014– Uses dendrochronology to reconstruct landscapes.
European Dendrochronolog Network to Asses Iberian Wooden (Heritage (2009–2011)	Supports global cultural heritage conservation.



BOSQUES VIEJOS

Exposición enmarcada dentro del proyecto de investigación

"Bosques Viejos frente al cambio climático: vulnerabilidad, capacidad adaptativa e implicaciones en la gestión forestal"

UNA EXPOSICIÓN DE:

MANUTRILLÄ

ORGANIZA:

CON EL APOYO DE:

1

0

Tin este faiter vamos a aprender a entraer una muestro de un árbol que non permita lere sua asilios, con un contractor, que se limb harense de Preside, jumos a dibigie el monograma (la histolia de su scrimientos o lo largo del siempo) de un árbol, y a partir de él identificaremos sigunos eventos climáticos que éste nos cuesta. También observaremos otros instrumentos que permiten estudiar el crecimiento de los árboles, como los dendificamentos de bandas o los dendificantes describantes.

On sets belief versus a presente una cercia Branda derinducculogia (entrologia, derdina, abo), comos, ferregio, que no permiero (corrore à resid y al existemento de las derios a tendo de la cocue suprecon es su modera. Los fuestes de los árboles, como su sutiliza diferencialos, enciertam modes información my valentos que seveno a situat de describa en el faller. De corresiento de los deleticas por ejemplo may refecionado con el clima, y en muestro país hay árboles de más de mil afoc, la historia charaleza de se en medios está contrada en son sollos.

Speriamon que las primeras estacomes meteorológicas se instituten a finule del deja XXX o promptio (del XX) podemo comprender a) que suá eject parte una excessionida cimilizad de un minero. Los "haqua" de ambiena de unibia de cercamiento o cranosparsas son también may valesco para datar comprende de la comprende de la comprende del c

Grupo/Departamento de investigación

Ciencias Agroforest

Anabel Calzado Car Reves Alejano Mono

Miguel Montoro Gironi Javier Väzquez Piqué.

Financiación:

Ministerio de Ciencia e Innovación. Proyectos de Generación de Conocimiento 2022 (PID2022-1349)
143.750 euros).

Importe de la financiació

143.750 euros

Valor que aporta la investigación

En an immention en que estamona sinémicia los efectos del cambio circitatio en diferentes aspectos, en esse intelle reamona camono qualque composito habitorio del cambiomonologia, un consorcia que non permiter asilizar las resociones de los arbitorias en escendiesa, los que non gale que comprende mejor la processa actualizar las resociones de los arbitorias en escendiesa, los que non gale as comprende mejor las processas actualizar portificar y desemble mentirargias para las comerciones de insultante los que dello aporticar a sementia sociedad. Por tiese el table comorbiosa a la subcincioni del público y en un comercioscioni en actualizar del comercio del comercio del comorbiosa del subcincio del público y en un comercioscioni en actualizar del comercio del comorbio del comorbio del comorbio del comorbio del comorbio gibilita.

La demidoreconólogia se mevira ademias como una disciplina com interes para las dataciones de madera histórica de edificios, pecios, etc., así como para entender procesos tan complejos como el declive de critifizaciones. Por tanto el tuller podrá contribuir a la concienciación del público hacia los grandes impactos que los carabies medioambientales pueden tener en la sociedad.

Con el tafler se pretende además sersubilitzar el público hacia el importante col que la ciencia tiene en progreso de la seciedad y con especial enferencia a la ternificia tratada, el papel que las ciencias del medicambiente desarrollan en el conocimiento de nuestro planeta y en la conservación de los recurs naturales que benefician a nuestra sociedad.

Investigador as participantes

Anabel Calzado Carretero Ciencias de la Tierra i Huelva

Reyes Alejano Monge Ciencias de la Tierra | Huelva

Javier Vázquez Piqué Ingenieria | Huelea

Miguel Montoro Girona Medio ambiente | Huelva

Científicas andaluzas difunden su trabajo en un 'Café con ciencia' dedicado a mujeres

Gabinete 07/03/2014 13:38

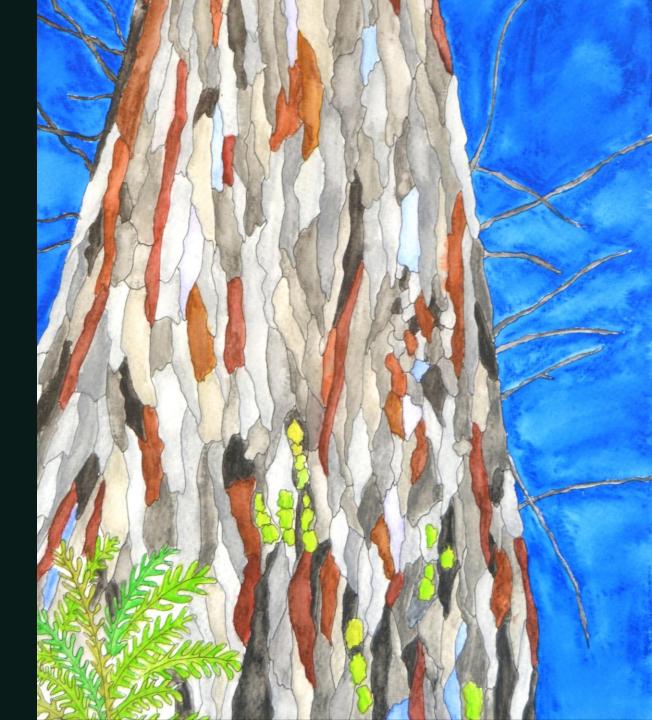
TIERRA Y MAR- CANAL SUR TV Estudio de los Bosques Viejos de Andalucía

CANADA

Alberta Central Rockies Forest

- Banff National Park, 14 km outside the Village of Lake Louise, Alberta, Canada.
- Multiple species of Lodgepole Pine, Engelmann Spruce and Subalpine Fir.
- Dense forest comprises 53 percent of Banffs area

Three countries
Old forests, People,
Cities



Grazie!

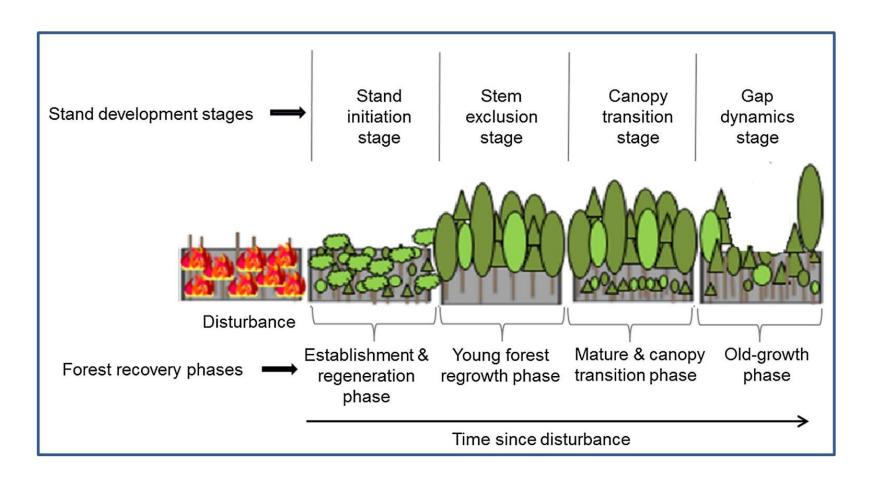
"If you want to go fast, go alone. If you want to go far, go together"

African proverb

Detection of old-growth forests through satellite images: a case study in a mediterranean mountain range (Cazorla, southeast Spain)

Structure

- 1. What is an Old-growth forest?
- 2. Detection through structural indexes and satellite images: stydy case in Cazorla mountain range



iiiNot a single definition!!!

Three criteria:

- Ecological succession
- Biogeochemistry
- Structural

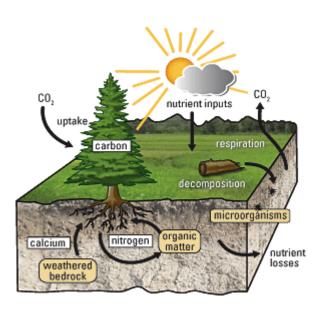
1. Ecological succesion

1. Ecological succesion

Limitations:

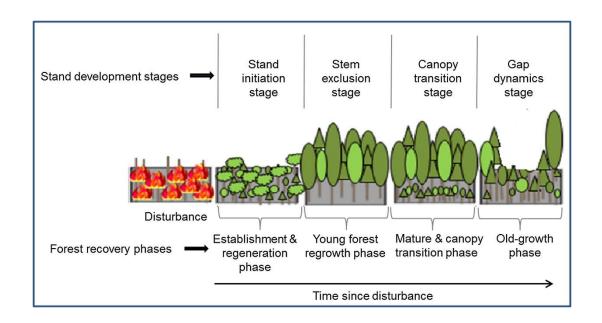
- To know the "forest history"
- To know the disturbance regime

2. Biogeochemical criteria

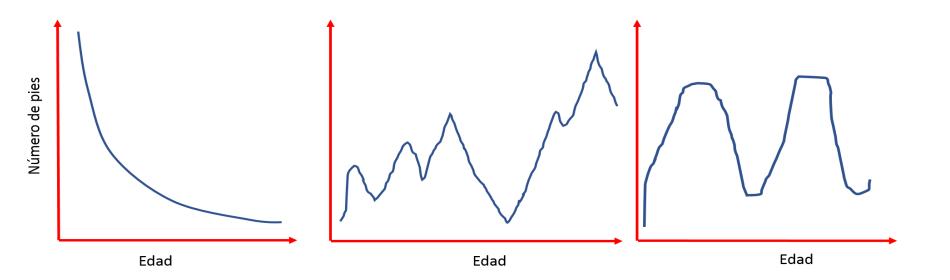

Caracteristics:

- Closed nutrient cycle
- NPP very low
- Net biomass accumulation quite low
- Increase under-canopy vegetation

Limitations:


- Very expensive
- Very slow
- A lot of work!!!

Based on:


- a. Age distribution
- b. Size distribution
- c. Spatial distributon patterns of dead and live trees

a. Age distributions

Mosseler et al. (2003): main age distributions in OGF:

• Structure inverted-J, irregular or multimodal

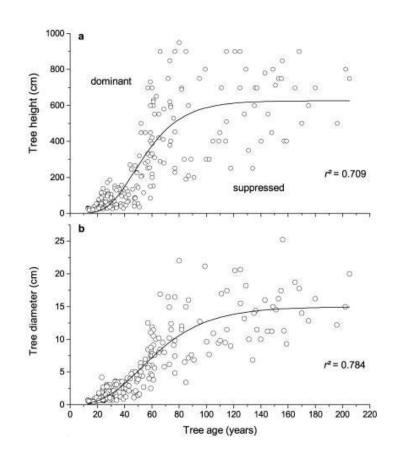
a. Age distributions

Mosseler et al. (2003): main age distributions in OGF:

- Structure inverted-J, irregular or multimodal
- Average age of dominant trees around half of the species longevity
- Some old trees close to the maximum longevity

a. Age distributions

Mosseler et al. (2003): main age distributions in OGF:


- Structure inverted-J, irregular or multimodal
- Average age of dominant trees around half of the species longevity
- Some old trees close to the maximum longevity

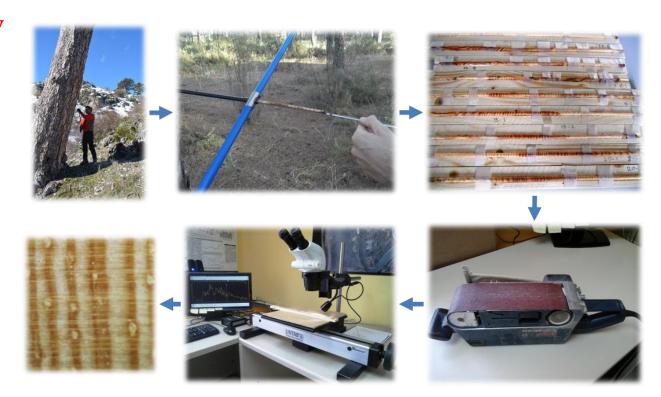
b. Size distributions

Assume a high correlation between age and size

c. Distribution of dead and live trees

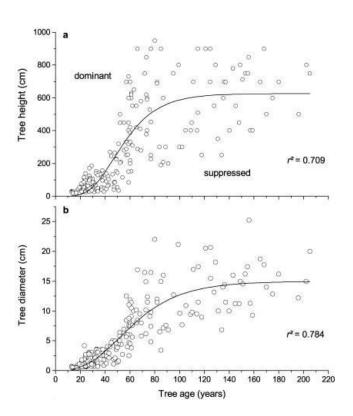
Typical atributes of gap dynamics:

- Presence of mortality
 - Big standing dead trees
 - Big logs of deadwood on the ground


Limitations:

1. Developed for not too many forest types (west coast USA)

- 1. Developed for not too many forest types (west coast USA)
- 2. Problems to determine the age of the trees
 - Costly

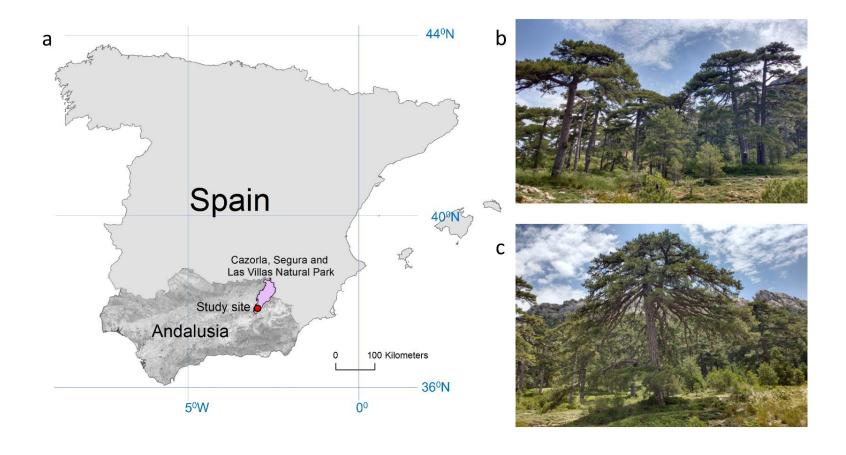


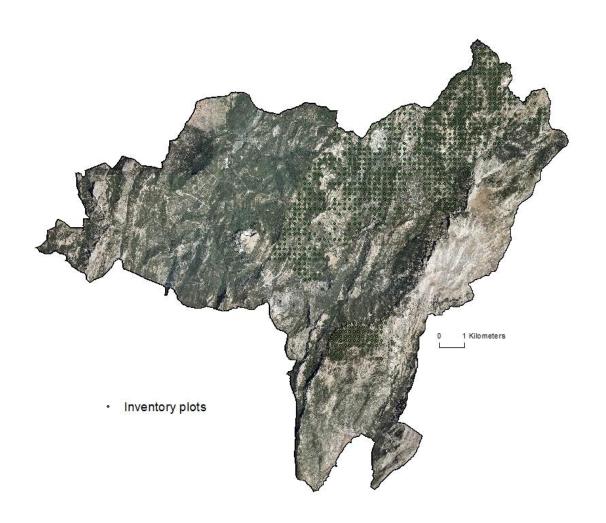
- 1. Developed for not too many forest types (west coast USA)
- 2. Problems to determine the age of the trees
 - Costly
 - We cannot distinghish rings in all species

- 1. Developed for not too many forest types (west coast USA)
- 2. Problems to determine the age of the trees
 - Costly
 - We cannot distinghish rings in all species
- 3. Correlation size-age can be low

- 1. Developed for not too many forest types (west coast USA)
- 2. Problems to determine the age of the trees
 - Costly
 - We cannot distinghish rings in all species
- 3. Correlation size-age can be low
- 4. Deadwood criterion is not always a Good indicator (ecuatorial areas, disturbances)

- Structural criteria: is the easiest way
- Old-Growth index (OGI)
 - ✓ Number that reflects the maturity of a stand
 - ✓ Obtained from structural variables:
 - Size variability
 - Density of trees exceding a particular diameter (e.g. >70 cm)
 - Mean diameter
 - Total density of trees > e.g. 5 cm
 - ✓ Created for forests of USA west coast
 - ✓ Not widely applied in mediterranean areas

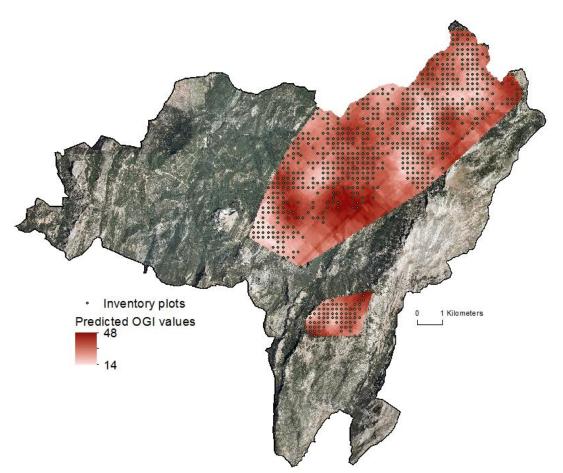


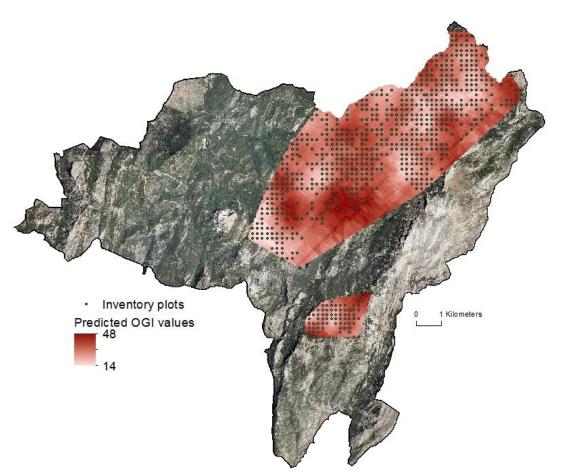


• OGI - Spies y Franklin (1991):

$$OGI = 25 \sum_{i=1}^{i=4} \left| \frac{\mathbf{x_{i obs}} - \mathbf{x_{i young}}}{\mathbf{x_{i old}} - \mathbf{x_{i young}}} \right|$$

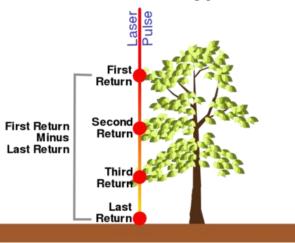
- Combination of 4 structural parameters:
 - 1. Number of trees DBH > 100 cm
 - 2. Standard deviation of DBH
 - 3. Mean DBH
 - 4. Density of trees > 5 cm DBH
- We need to know the characteristic values of the structural parameters for a Young and Old stand

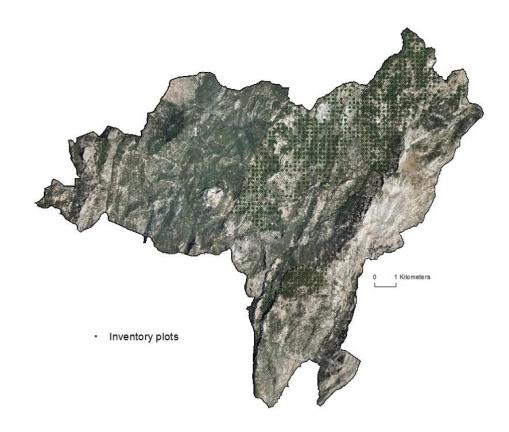



- Inventory data 756 plots (1plot/4 ha)
- Plots >80% *P. nigra.*
- Caracteristic values for Old stands: inventory of **21 plots**
- Caracteristic values for Young stands: values for inventory plots with DBH < 20 cm and P. nigra > 80% (18 plots).
- Variations with respect to the original index:
 - Diameter variability: standard deviation and Gini coefficient.
 - Big trees: >50, 70 y 100 cm DBH.
 - Total plot density is not included.

Structural variables	Old forest (n=21)	Young forest (n=18)
Mean DBH (cm)	70	18
StdDev DBH	31	4
Basal area (G, m ² ha ⁻¹)	36	6
Total density (trees /ha)	84	285
Density of trees > 50 cm DBH	59	0.7
Density of trees > 70 cm DBH	42	0
Density of trees > 100 cm DBH	12	0

Distribution of OGI in Navahondona by krigging:

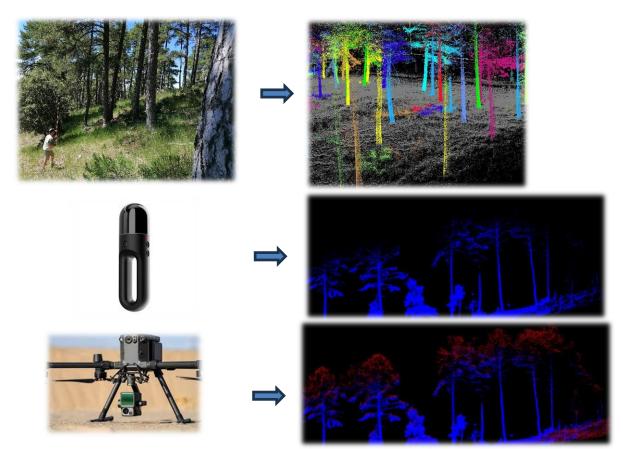

Do the orientation, altitude and slope influence the distribution of OGF?: No


- Limitation of traditional inventory:
 - ✓ Sampling intensity \rightarrow low to detect some stands
 - ✓ Accesibility of difficult areas

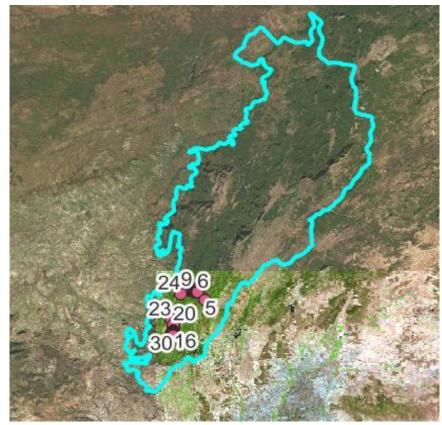
Lidar Return Types

- Data from NCGI:
 - ✓ Density: 2 points/m²

LiDAR metrics calculated for each plot:


LiDAR metrics	Description
h _{mean,} h _{mode}	mean, mode
h _{min} , h _{max}	minimum, maximum
$h_{SD,}h_{CV}$	Std deviation, CV
h_{Skw}	Skewness
h _{kurt}	Kurtosis
h_{ID}	Intercuartilic range
h_{05} , h_{10} , h_{20} ,	Percentiles
h ₂₅ ,,h ₉₀ , h ₉₅ , h ₉₉	
h_{CRR}	canopy relief ratio ((mean height-min
	height)/max height-min height))
CC	Canopy coverage (porcentage of first returns
	over 4,5 m/total returns)

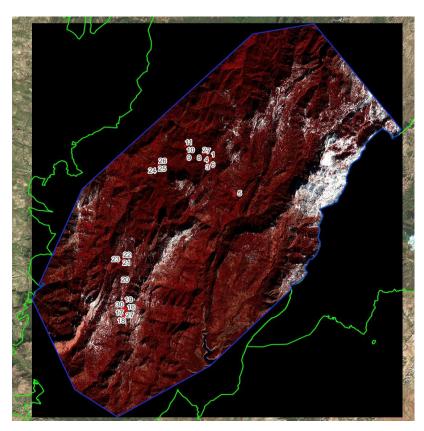
Modelling OGI with LiDAR metrics:


$$OGI = -21.4329 - 0.2741 \times ARAM.TFR + 1.9453 \times P_{95} + 7.9527L_2 + 18.8002 * CRR$$

- ARAM.FTR quotient of all returns over the average over total of first returns
- P95: percentil 95
- L2: moment of order 2
- CCR: canopy relief ratio

- Modelling OGI and stand atributes with satelite data
 - First step: Field plots (30) with TLS and dron with LiDAR

- Modelling OGI and stand atributes with satelite data
 - Use of free satellite data: Sentinel (10 m pixel)

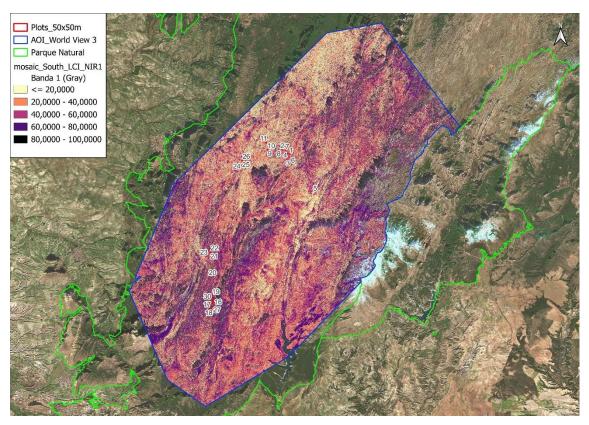

Índex	Description	Formulae	Reference
NDVI_1	Normalized Difference Vegetation Index	$\frac{B8 - B4}{B8 + B4}$	(Rouse et al., 1974)
NDVI_2	Normalized Difference Vegetation Index	$\frac{B6 - B5}{B6 + B5}$	(Gitelson and Merzlyak, 1994)
MCARI	Modified Chlorophyll Absorption Ratio Index	$[(B5-B4)-0.2*(B5-B3)]*\left(\frac{B5}{B4}\right)$	(Chaoyang Wu et al., 2008)
NDGI	Normalized Difference Generic Index	$\frac{B8 - B5}{B8 + B5}$	(Pasqualotto et al., 2018)
FAPAR	Leaf Area Index Fraction of Absorbed Photosynthetically Active Radiation	Biophysical Processor de SNAP	
fCover	Vegetation cover fraction		
LCI	Leaf Chlorophyll Index	$\frac{B8 - B5}{B8 + B4}$	(Cardim & Lima, 2019)
EVI	Enhanced Vegetation Index	$\frac{2,5*(B8-B4)}{(B8+(6*B4))-((7,5*B2)+1)}$	(Huete et al., 2002)
MSAVI	Modified Soil-Adjusted Vegetation Index	$\frac{2*B8+1-\sqrt{(2*B8+1)^2-8*(B8-B4)^2}}{2}$	(Qi et al., 1994)
IRECI	Inverted Red-Edge Chlorophyll Index	$\frac{B8 - B4}{\frac{B6}{B5}}$	(Frampton et al., 2013)

- Modelling OGI and stand atributes with satelite data
 - Use of free satellite data: Sentinel (10 m pixel)

$$OGI = 168.8 - 287.5 * NDGI$$
 $R^2 = 0.18$

- Vegetation indices most correlated with the OGI are NDGI, LCI, and IRECI
- These indices incorporate the NIR and Red Edge bands in their formulation, which are sensitive to canopy structure (NIR) and leaf density or chlorophyll content (Red Edge)—both factors closely related to canopy cover.
- The fraction of canopy cover (Fcc), measured with TLS, showed a strong negative correlation with OGI (R = -0.71, p < 0.01), reflecting lower coverage in mature forests due to natural clearings.

- Modelling OGI and stand atributes with satelite data
 - ➤ Next step: use of high resolution Worldview-3 satellite data (30 cm resolution)



Variable	Descripción
NDVI_1a	Normalized Difference Vegetation Index
NDVI_1b	Normalized Difference Vegetation Index
NDVI_2	Normalized Difference Vegetation Index
MCARI	Modified Chlorophyll Absorption Ratio Index
NDGI	Normalized Difference Generic Index
LCI_NIR1	Leaf Chlorophyll Index
LCI_NIR2	Leaf Chlorophyll Index
EVI	Enhanced Vegetation Index
MSAVI	Modified Soil-Adjusted Vegetation Index
IRECI	Inverted Red-Edge Chlorophyll Index
ISE	Stress index
IHD	Wetness index
IHD_Yellow_NIR1	Wetness index NIR1
IHD_Yellow_NIR2	Wetness index NIR2
YI	Yellow Index
fcc_PNOA_OL	Fcc from PNOA MS y PNOA ALS.
fcc_PNOA_Ortho	Fcc from PNOA MS.
fcc_WV3	Fcc from WV3.
Fcc_TLS	Fcc from TLS.
fcc_ALS_TLS_CloudC	Fcc from cloud points TLS-ALS.

- Modelling OGI and stand atributes with satelite data
 - ➤ Next step: use of high resolution Worldview-3 satellite data (30 cm resolution)

VARIABLES	RSQ
+FCC_TLS	0.50
+LCI_NIR1	0.47
+IRECIWV3	0.46
+NDGI	0.46
+IHD_NIR1	0.46
+IHD_NIR2	0.45
+LCI_NIR2	0.45
+IHD	0.45
+MSAVI	0.44
+FCC_TLS+ISE	0.51
+FCC_PNOA+LCI_NIR1	0.56
+FCC_PNOA+IHD_NIR1	0.56
+FCC_PNOA+NDGI	0.55
+FCC_PNOA+IRECIWV3	0.56
+FCC_PNOA+IHD	0.55
+FCC_PNOA+IHD_YNIR2	0.55

- Modelling OGI and stand atributes with satelite data
 - ➤ Next step: use of high resolution Worldview-3 satellite data (30 cm resolution)

Grazie!!!