

Scotland's centre of expertise connecting climate change research and policy

Predicting the risk of wind damage to multiple forest types in a changing climate

Barry Gardiner¹ Tommaso Locatelli^{2,3}

1. EFI Planted Forest Facility, Cestas, France

- 2. Forest Research, Roslin, Scotland
- 3. ClimateXChange, Scotland

Plan of Talk

Tools for supporting decisions on forest storm risk management

- Short background to forest wind damage in Europe
- Development of ForestGALES wind damage risk model
 - Development of risk model for uniform coniferous plantation
 - Addition of broad-leaved species
 - Application in different countries
 - Development of a single tree version for complex forest structures
- Integration of ForestGALES with other computer-based tools:
 - Integration within Excel spreadsheet
 - Integration in QGIS
 - Integration with airflow model
- Current/Future developments of ForestGALES
 - Library in R for integration in other DSS
 - Link with growth models and climate prediction
 - Link between single tree version and LiDAR survey data

2/38

Storm 31 January 1953: Scotland

Storm Klaus 24th January 2009: Aquitaine

Risk Analysis and Management

Risk Models in Risk Management

7/38

EF

Windthrow Hazard Classification: Early Wind Damage DSS

Windiness Scores

-Region

- -Elevation
- -Topographic Shelter

(Topex)

Soil Score

-Rooting Depth

Integrating knowledge: Decision Support Systems

ForestGALES: Modèle de Risque de Vent

Versions of ForestGALES: Basaize 1.2 and ForêtTempête 1.1

ſ	ForêtTempête 1.1			η	
	<u>Fichier</u> <u>M</u> ode Opt <u>i</u> ons Fe <u>n</u> être <u>A</u> ssistance				
📑 Basaize 1.2					<u> </u>
Archivo Modo Opcione Archivo Modo Opcione Predicción para rodales i Características del rodal Rodal ID Basaize Grupo de suelo A: Suelos s Arraigo 2: Profund © Espaciamiento actual (m © Almacenamiento actual (m Weibult Latitud 43.0000 s Encontrar Weibull coeficient Encontrar las coordenadas g Riesgo de daños del viento Período de retor	Image: Second constraint destables Image: Second	Caractéristiques des arbres Espèces Pinus pinaster (données françaises) Classe de Fertilité 02 Système de éclaircissage Éclaircie par le haut Espacement initial (m) 2 Age 20 Détails des Arbres Effet de Lisière Classère établi Lisière nouvelle Largeur de la clairière (m) Classe de Fertilité Classe de Fertilité	Controls Controls Lancer Lancer Controls Lancer Controls Co	tar nir formulario ne a documento Jar documento s por defecto	ión a Excel
DERROCAR 200 ROTURA 200	CHABLIS 200 Status 1 1 '2 '3 '4' 5' 6' Status 1 RUPTURE 200	122.0 km/h 99.5 km/h	Probabilités		

ForestGALES Inputs and Outputs

ForestGALES for Complex Forest Stands

ForestGALES was only designed for uniform coniferous stands.

- 1. Needed to add broadleaved species
- Needed to be usable in complex forest stands (multi-species, multi-age)

Even-aged regular

Uneven-aged irregular

ForestGALES_TMC for Complex Forest Stands

New Method: Turning Moment Coefficient

TMC related to competition index

TMC = f(D, H)

8

6

8

2

4

6

 $D_{1,3}^2 H(m^3)$

8

10

 T_{c} (kg) 8

ForestGALES for Broadleaf Species

Birch

Beech

Oak

Silver birch Betula pendula

European beech Fagus sylvatica

Pedunculate oak *Quercus robur*

ForestGALES in Excel

16/38

EFI

· - ·	File -					ols ▼ Data					71			~						
1	i 📙 🔮			â• I ∜	-								🗏 I 🛄 T 🔶 T	-						
al	*	10 · B	ΙŪ		= - 8	×- •a• -	Gener	al 🔻 🛄 🔻	% * .0	0 .00 IA	A F	E 🗄 - 🎱	- A - 159	- 🛄 •	*					
							Toolba	rs												
	X2		. (=	fx S	hallow											_				
1	M	N	0	P	0	B	S	Insert Fur	oction					2	X	AH	AL	AJ	AK	AL
	v	cmed	ccorr	Inda		Longitude	_						-	_				SOverturn (m/s) Pro		
	156	7.8		_	4 7.1996783	-2.53	43.05	Search fo	or a functio	n:						18.1	40.3	32.7	0.0	0.0
	211	8.44	11	2.997253	1 6.7569324	-2.53	43.05									17.5	33.3	27.2	0.0	0.0
	274	9.1333333	12.6	3.185525	2 6.4377516	-2.53	43.05		a brief desc	cription of	fwhat you w	ant to do and	then click		Go	17.5	29.7	23.9	0.0	0.0
	338	9.6571429	12.8	3.340881	6.1944054	-2.53	43.05	GO	Go								27.3	21.7	0.0	0.0
	397	9.925	11.8	3.468346	4 5.9964521	-2.53	43.05	Or sele	ct a <u>c</u> atego	ory: Expo	orted R Func	tions	-			17.7	25.6	20.0	0.0	0.0
	454		11.4		3 5.8406417	-2.53	43.05									17.8	24.1	18.6	0.0	0.0
	507	10.14	10.6	3.653611	4 5.7170277	-2.53	43.05	Select a f	functio <u>n</u> :							17.9	22.9	17.5	0.0	0.0
	560		10.6	3.723906	4 5.6204009	-2.53	43.05	R cws	R.cws Break							18.1	22.1	16.7	0.0	0.0
	611		10.2		8 5.5451774	-2.53	43.05		_Break_Fu							18.2	21.6	16.2	0.0	0.0
	658		9.4		7 5.4806389	-2.53	43.05		R.cws Damage							18.4	21.1	15.7	0.0	0.0
			8.2			-2.53	43.05		R.cws_Damage_Critical							18.5	20.7	15.2	0.0	0.
		9.7866667	7		3 5.3752784	-2.53	43.05	R.cws_Over_Full							18.7	20.4	14.9	0.0	0.	
	763	9.5375	5.8		2 5.3278762	-2.53	43.05		R.cws_Overturn R.EigenValues R.cws_Break(species, mean_ht, mean_dbh, spacing)							18.7	20.0	14.5	0.0	0.
	140	7			7 7.3172124	-2.53	43.05									18.3	43.2	34.6	0.0	0.0
	191	7.64			2 6.8710913	-2.53	43.05	R.cws								17.7	35.6	28.8	0.0	0.0
		8.2666667			8 6.5510803	-2.53	43.05	Exporte	ed Function	n.						17.6	31.6	25.4	0.0	0.0
		8.7428571			6 6.3062753	-2.53	43.05									17.7 17.8	29.0	23.0	0.0	0.0
	361	9.025 9.0888889			9 6.1070229	-2.53	43.05										27.2	21.3	0.0	0.0
	405	9.12			7 5.9427994	-2.53	43.05										25.5	19.7	0.0	0.1
		9.1454545			8 5.8141305 2 5.7170277	-2.53 -2.53	43.05 43.05									17.9 18.0	24.2 23.3	18.6 17.7	0.0	0.0
	549	9.15			2 5.770277 6 5.6383547	-2.53	43.05	Help on H	his functio				01			18.2	23.3	17.1	0.0	0.0
-		9.1230769	8.8		5.5353547 1 5.5759491	-2.53	43.05	nep on u	nis functio	<u></u>			OK	C	ancel	18.4	22.0	16.7	0.0	0.0
		9.0142857			9 5.5214609	-2.53	43.05	2.103	1.210	minerar	Snanow	110			20.3	18.5	22.4	16.2	0.0	0.1
	663	8.84			3 5.4722707	-2.53	43.05	2.783	1.276	Mineral	Shallow	No	C	2	20.3	18.6	21.5	15.8	0.0	0.0
	689	8.6125			4 5.4293456	-2.53	43.05	2.783	1.276	Mineral	Shallow	No		5	27.4	18.6	21.0	15.4	0.0	0.0
	124	6.2			1 7.4656553	-2.53	43.05	2.783	1.276	Mineral	Shallow	No	-	5	23.5	18.3	45.4	36.3	0.0	0.0
	169	6.76	9	2.858917		-2.53	43.05	2.783	1.276	Mineral	Shallow	No		5	22.7	17.8	37.7	30.5	0.0	0.0
	221	7.3666667	10.4			-2.53	43.05	2.783	1.276	Mineral	Shallow	No		5	22.8	17.7	33.4	26.8	0.0	0.1
	274	7.8285714	10.6		5 6.4345465	-2.53	43.05	2.783	1.276	Mineral	Shallow	No	0	5	23.2	17.7	30.5	24.3	0.0	0.0
	323	8 075			7 6 2344107	-2.53	43.05	2 783	1276	Miperal	Shallow	No		1	23.8	17.8	28.6	22.5	0.0	0.0

ForestGALES in QGIS

ForestGALES coupled with WAsP Airflow Model

WASP Wind resources for wind turbine production

18/38

Current/Future developments of ForestGALES

- FOSPREF-Wind:
 - Integration of ForestGALES R library with other models/DSS: Link with growth models and climate predictions
- Link between single tree version and LiDAR survey data

Models

3PG

Xenakis et al., 2008. Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model. *Ecological modelling*, *219*(1-2), pp.1-16.

We know their parameter/input sensitivities

ForestGALES

Locatelli et al., 2017. Variance-based sensitivity analysis of a wind risk model-Model behaviour and lessons for forest modelling. *Environmental modelling & software, 87*, pp.84-109.

22/38

Workshop Vaia Storm Padua 30 Oct 2019

23/38

Scottish case study area: coastal Scots Pine (*Pinus sylvestris*) forests in north Aberdeenshire

- Increased resolution of temperature CHELSA Climate 3PG input raster files with lapse rates
- 3PG functions extracted from existing FORTRAN code (Xenakis, 2007) and R shiny web app (Arias-Rodil et al.), rebuilt as R package: <u>https://github.com/drGeorgeXenakis/threePG</u>
- Calibrated 3PG-R for SP using FC permanent sample plots data
- ForestGALES complete R package ('fgr') released (both stand-level and individual tree methods): <u>https://github.com/tom-locatelli/fgr</u>
- Created QGIS Toolbox algorithm to run *fgr* within QGIS tested for Maritime Pine (*Pinus pinaster*) forests in Aquitaine, France
- Calculated orographic speed-ups maps for cardinal & intercardinal directions with WAsP (<u>https://www.wasp.dk/</u>)
- Coded and tested R functions for landscape-level aerodynamic roughness speed-ups and depth of boundary layer as a function of roughness changes

25/38

NEXT:

- Test aerodynamic roughness speed-ups scripts on raster files of land use change
- Package these scripts in a corollary R package to fgr (foRest.aiRflow?)
- Run the coupled models in R using EURO-CORDEX data
- Create QGIS Toolbox scripts to facilitate forest managers' planning operations

- Dem of surrounding area
- Fairly gentle
- Quite uniform predominant direction of valleys

- Management coupes only partially match topography
- Other characteristics might be important: soils, previous management history

29/38

Previous thinning

Forest in 2002

No data in 2002

Forest in 2006

Forest in 2008

Forest in 2012

Workshop Vaia Storm Padua 30 Oct 2019

33/38

- Tree-level investigation allows discriminating tree vulnerability not only between but also within forest compartments
- Can help with planning management operations
- Can inform re-designing of management coupes

34/38

36/38

Summary

To Date

- 1. ForestGALES wind risk model developed in UK for homogeneous conifer plantation
- 2. Model has been modified to work in France, Northern Spain, Canada (Quebec and BC), Japan, Denmark, New Zealand, USA, Brazil, etc.
- 3. New tree pulling experiments have added additional species including *Pinus pinaster, Fagus sylvatica, Pinus radiata, Eucalyptus globulus.* Other species parameterisations are based on data from other tree pulling experiments in other countries. Total of 20 species.
- 4. Model is available as "stand alone" version, integrated in Excel or as an R library.
- 5. Maps of wind risk in individual forests can be produced at stand level for current conditions and into the future using stand data, soil data, wind climate data and growth models.
- 6. With LiDAR data model can calculate wind damage risk to individual trees in a stand.
- 7. Model can be adapted for any country in the world with knowledge of species choice, soils and wind climate.

Current/Future

38/38

- 1. Standardisation of tree resistance to overturning using database of tree-pulling from around the world.
- 2. Integration of the R version of ForestGALES with growth models and climate models to make predictions of the impact of a changing climate on wind risk
- 3. Validation of single tree ForestGALES through development of linkage with LiDAR data

