

The Vaia storm in North Eastern Italy: facing an unprecedented disturbance in mountain forests of the Southern Alps

<u>Lingua E</u>, Pirotti F, Grigolato S, Cavalli R, D'Agostino V, Marchi N, Costa M, Motta R, Meloni F, Garbarino M, Marzano R

THE VAIA STORM

27-30 October 2018

Two phases

Elaborazione: M. Borga - TESAF

October 27-28 high intensity rainfall (average 335 mm; max 519 mm)

October 29-30 •

high intensity rainfall (average 198 mm; max 298 mm) strong wind (close to 200 km h⁻¹) SE direction

e Sistemi Agro-Forestali

UNIVERSIT? DEGLI STUDI

DI PADOVA

Effects

I phase:

Landslides, debris flows, floods

Effects

II phase:

Windthrows

Unprecedented disturbances?

Storm	Year	m ³
-	1966	≃700 K
Viviane	1990	≃100 K
Vaia	2018	~ 8.5 M

Fuchs et al. 2013, 2014, 2015

Figure 2. Development of growing stock and damage caused by storms in the period 1950–2010.

Figure 3. European storm damage to forests by month of the year. (Gardiner et al. 2010)

Mid-severity wind disturbance «Diffuse» windthrows

Feltre (BL)

More than 60% of urban trees

Università degli Studi di Padova

Identification of affected areas Quantification of windthrown timber

Criticalities

Accessibility Communication Severity assessment

Chirici et al. 2019

Chirici et al. 2019

First estimation: 42.525 ha, corresponding approximately to 8.5 Mm³

Affected Area identification

Visual assessment Remote sensing On demand data acquisition

Post-disturbance intervention

Civil Emergency phase (buildings, road networks,...)

Timber extraction Salvage logging operations

Timber extraction

Slope Accessibility

Forest enterprises Mechanization

Safety issues

Bark beetles

Outbreaks in 3 years?

Considering Alpine countries (A, CH) in the years following big storms,

damage by bark beetle 0.44-2 x windthrown timber (Gregoire et al. 2015)

TESAF Dipartimento Territorio e Sistemi Agro-Forestali

Wood management

Market (€)

Storage

Preservation

No coordination

Afforestation

Why?

Where?

What?

How?

Crowd funding initiatives

Do we really need to artificially regenerate all the blowdowned stands?

Provenance Mixed stands Irregular / clusters Shelter / fences

Resilience and resistance

J. For. 111(4):287-297 http://dx.doi.org/10.5849/jof.13-016 Copyright © 2013 Society of American Foresters

Assisted migration Altitudinal Latitudinal

Dipartimento Territorio

e Sistemi Agro-Forestali

DEGLI STUDI

DI PADOVA

REVIEW ARTICLE

Ecosystem services

Protection forests

UNIVERSITÀ DEGLI STUDI DI PADOVA

VAIA & Rockfall

Case study

Remote sensing

Lidar

UAV

Rockyfor3D simulations

Protective effect

BARI (Barrier effect) MIRI (energy reduction) ORPI (overall protection)

Without forest

With forest

July 2019, 8pts m⁻²

Roughness estimation

- Point cloud normalised on ground (elevation -> height)
- All points above 2.5 metres were dropped
- RG values calculated as quantiles starting from above threshold

Simulation scenario

Protection forest pre-Vaia (summer 2018)

Post Vaia (Unsalvaged)

Post Vaia (Salvaged)

- 1000 simulations
- Rectangular blocks (appr. 1.2 m³)
- Rock volume variation: 50%
- Initial fall height: 5m

No forest

With forest

With blowdown timber unsalvaged

Checkpoint	Scenario	BARI	MIRI	ORPI	Classification*
1	Pre Vaia	38.4	24.4	52.6	Medium PE
	Post Vaia	62.4	39.1	76	Medium PE
2	Pre Vaia	16.3	39.3	41.1	Low PE
	Post Vaia	26.5	57.9	59.8	Medium PE
3	Pre Vaia	45.5	10	54.4	Medium PE
	Post Vaia	92.6	52.1	98.1	High PE

* ≤ 50 = Low Protective Effect,
between 50 and 90 = Medium Protective Effect,
> 90 = High Protective Effect
(Dupire et al. 2016)

Wohlgemuth et al. 2017

Avalanches

New release areas

High severity windblown areas

Slope >29°

Wohlgemuth et al. 2017

Changes in fire risk

Fire risk maps 2018

Fores	St fuel models			
	12		13	
Model ¹⁾	Description	Danger	Difficulties in fire suppression	
10	Low Load Activity Fuel	High	High	
11	Moderate Load Activity Fuel or Low Load Blowdown	Medium	Medium	
12	High Load Activity Fuel or Moderate Load Blowdown	High	Very high	
13	High Load Blowdown	Very high	Very high	

Opportunities

Monitoring

Long Term Ecological Research

Post-disturbance interventions

Schönenberger 2002

Network – VAIA.net

degli Studi di Padova

Opportunities

Forest management

Forestry sector

Logistic planning

Awareness and preparedness

More harmonized and reliable data on our forests....

No "one size fits all" management approach, but it is advisable to adopt site and case specific tailor-made solutions.

Neighbours suffered the same, learn from their experience.

Do not take decisions based only on the emotional wave.

Climate is changing Land use is changing Disturbance regimes are changing

Forest Management has to change too!

Thanks for the attention

emanuele.lingua@unipd.it

